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Visual attention mechanisms are known to select information to
process based on current goals, personal relevance, and lower-
level features. Here we present evidence that human visual atten-
tion also includes a high-level category-specialized system that
monitors animals in an ongoing manner. Exposed to alternations
between complex natural scenes and duplicates with a single
change (a change-detection paradigm), subjects are substantially
faster and more accurate at detecting changes in animals relative
to changes in all tested categories of inanimate objects, even
vehicles, which they have been trained for years to monitor for
sudden life-or-death changes in trajectory. This animate monitor-
ing bias could not be accounted for by differences in lower-level
visual characteristics, how interesting the target objects were,
experience, or expertise, implicating mechanisms that evolved to
direct attention differentially to objects by virtue of their mem-
bership in ancestrally important categories, regardless of their
current utility.

animacy � category specificity � domain specificity �
evolutionary psychology � visual attention

V isual attention is an umbrella term for the set of operations
that select some portions of a scene, rather than others, for

more extensive processing. These operations evolved because
some categories of information in the visual environment were
likely to be more important or time-sensitive than others for
activities that contributed to an organism’s survival or repro-
duction. The selection criteria that direct visual attention can be
categorized by their origin: (i) goal-derived: criteria activated
volitionally in response to a transient internally represented goal;
(ii) ancestrally derived: criteria so generally useful for a species,
generation after generation, that natural selection favored mech-
anisms that cause them to develop in a species-typical manner;
and (iii) expertise-derived: criteria extracted during ontogeny by
evolved mechanisms specialized for detecting which perceptual
cues predict information that enhances task performance.

These three types of criteria may also interact; for example,
differential experience or temporary goals could calibrate or
elaborate ancestrally derived criteria built into the attentional
architecture.

The ways in which human attention can be affected by goals
and expertise have been extensively investigated. Indeed, hu-
mans are zoologically unique in the extent to which we evolved
to engage in behavior tailored to achieve situation-specific goals
as a regular part of our subsistence and sociality (1, 2). Among
our foraging ancestors, improvising solutions in response to the
distinctive features of situations would have benefited from the
existence of goal-driven voluntary attentional mechanisms. As
predicted by such a view, otherwise arbitrary but task-relevant
objects command more attention than task-irrelevant ones (3),
and expertise in a task domain shifts attention to more task-
significant objects (4), features (5), and locations (6).

In contrast, attentional selection criteria that evolved in
response to the payoffs inherent in the structure of the ancestral
world have been less systematically explored. Yet, the rapid
identification of the semantic category to which an object

belongs (e.g., animal, plant, person, tool, terrain) and what its
presence in the scene signifies [e.g., predatory danger, food
(prey), offspring at risk] would have been central to solving many
ancestral adaptive problems. That is, stably and cumulatively
across hundreds of thousands of generations, attention allocated
to different semantic categories would have returned different
average informational payoffs. From this perspective, it would be
odd to find that attention to objects was designed to be deployed
in a category-neutral way. Yet there has been comparatively little
research into whether some semantic categories spontaneously
recruit more attention than others, and whether such recruit-
ment might be based on evolved prioritization. Most exceptions
have studied attention and responses to highly social information
such as faces (7, 8), eye gaze (9), hand gestures (10), and stylized
human outlines (stick drawings and silhouettes) (11).

The Animate Monitoring Hypothesis
For ancestral hunter-gatherers immersed in a rich biotic envi-
ronment, non-human and human animals would have been the
two most consequential time-sensitive categories to monitor on
an ongoing basis (12). As family, friends, potential mates, and
adversaries, humans afforded social opportunities and dangers.
Information about non-human animals was also of critical
importance to our foraging ancestors. Non-human animals were
predators on humans; food when they strayed close enough to be
worth pursuing; dangers when surprised or threatened by virtue
of their venom, horns, claws, mass, strength, or propensity to
charge; or sources of information about other animals or plants
that were hidden or occluded; etc. Not only were animals (human
and non-human) vital features of the visual environment, but
they change their status far more frequently than plants, arti-
facts, or features of the terrain. Animals can change their minds,
behavior, trajectory, or location in a fraction of a second, making
their frequent reinspection as indispensable as their initial
detection.

For these reasons, we hypothesized that the human attention
system evolved to reliably develop certain category-specific
selection criteria, including a set designed to differentially
monitor animals and humans. These should cause stronger
spontaneous recruitment of attention to humans and to non-
human animals than to objects drawn from less time-sensitive or
vital categories (e.g., plants, mountains, artifacts). We call this
the animate monitoring hypothesis. Animate monitoring algo-
rithms are hypothesized to have coevolved alongside goal-driven
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voluntary processes that focus attention on task-relevant objects,
providing the voluntary system with one of several interrupt
circuits made necessary by a surprising world. These algorithms
should operate automatically and autonomously from executive
function, so that important changes in non-humans and humans
can be detected rapidly, even when they are unexpected or
irrelevant to current goals or activities. Hence, we propose that
animate inputs will recruit visual attention in a way that is less
context-, goal-, expertise-, and state-dependent than other in-
puts. Although increasingly focused attention may increasingly
screen out task-irrelevant stimuli, such exclusion should affect
human and animal stimuli less than members of other categories.
In particular, subjects’ attention should display the predicted
animate monitoring bias in the absence of instructions to look for
animals or humans and regardless of their relevance to the task
or to subjects’ goals.

The counterhypothesis is that visual attention contains no
mechanisms designed to differentially allocate attention on the
basis of the semantic category of the input. This means there
should be no mechanisms that evolved to deploy attention
differentially to animate targets, and therefore no animate
monitoring bias should be found. If, nevertheless, evidence of
such a bias were to be found, the fallback hypothesis would be
that such an effect would be the result of expertise: that is,
starting with an equipotential attentional system, ontogenetic
training would accrete attentional biases as a function of differ-
ential experience with the stimulus inputs and their ontogenetic
importance. We will call this the expertise hypothesis.

Assessing Preferential Attention
Experiments show that viewers often fail to detect sizeable
changes in an image when these occur during very brief inter-
ruptions of sight, a phenomenon known as change blindness (13,
14). To explore the selection criteria implemented by attentional
mechanisms, we used the change detection (CD) paradigm (Fig.
1), in which viewers are asked to spot the difference between two
rapidly alternating scenes that are identical except for a change
to one object. The logic is straightforward: in a CD paradigm,
changes to more attended objects or regions in a complex natural
scene will be detected faster and more reliably than changes to
less-attended ones. By varying which features in a scene are
changed, one can learn the criteria by which visual attention
mechanisms select objects for further processing. In a CD

experiment, subjects are instructed to detect changes, but they
are not given any task-specific goal that would direct their
attention to some kinds of objects over others. Thus, the CD
paradigm can be used to investigate how attention is deployed in
the absence of a voluntary goal-directed search (15). If the
animate bias hypothesis is correct, then change blindness will be
attenuated for animals and humans compared with other object
categories. This is because category-specific attention mecha-
nisms will automatically check the status of animals and people
on an ongoing basis.

We adapted a standard CD task (14) to test for the predicted
category-specific biases (Fig. 1). The stimuli were color photo-
graphs of natural complex scenes (Fig. 2). For Experiments
(Exp) 1–4, 70 scenes with target objects from five semantic
categories were used (14 in each category): two animate (people
and animals) and three inanimate [plants; moveable/
manipulable artifacts designed for interaction with human
hands/body (e.g., stapler, wheelbarrow); fixed artifacts constru-
able as topographical landmarks (e.g., windmill, house)]. These
categories were chosen because converging evidence from neu-
ropsychology and cognitive development suggests each is asso-
ciated with a functionally distinct neural substrate (16, 17). Each
involves an evolutionarily important category, but only the
animates require close visual monitoring. Target categories for
Exp 5 (96 scenes) were vehicles, artifacts that do not move on
their own, non-human animals, and people. [For details, see
supporting information (SI) Appendix 1].

Tests and Predictions
If, as hypothesized, the human attentional architecture includes
evolved mechanisms designed to differentially direct attention to
both human and non-human animals, then, in a CD task using
complex natural scenes, we predict that: (i) changes to animals
(both human and non-human) will be detected more quickly
than changes to inanimate objects and (ii) changes to animals
will be detected more frequently than changes to inanimate
objects. By hypothesis, attention is differentially recruited to
animals by virtue of neural processes recognizing (at some level)
their category membership. The bias is category-driven. There-
fore, (iii) although animals will be judged more interesting than
inanimate objects, detection rates will be better predicted by the
target’s category (animate or inanimate) than by how interesting
the targets are judged to be, and (iv) the detection advantage for
animate categories will not be due to lower-level perceptual
characteristics, such as visual complexity or high contrast.

According to the expertise counterhypothesis, any effects by
category will arise from differences in frequency of observation,
differential training with different categories, or the relative
importance during ontogeny of paying differential attention by
category. We selected vehicles as an evolutionarily novel contrast
category with which subjects have a great deal of experience;
which move and do so in a self-propelled fashion; and which
subjects have been trained from childhood as pedestrians and
drivers to differentially attend to because of the life-or-death
importance of anticipating their momentary shifts in trajectory.
In comparison, our subjects see and interact with non-human
animals far less often than with vehicles, and animals have little
practical significance to our subjects. Despite greater subject
expertise with vehicles, we predict that (v) the animate bias will
not be a consequence of ontogenetic exposure to things in
motion. In particular, although subjects see large numbers of
vehicles moving every day, changes to vehicles will not be
detected as quickly or reliably as changes to animals and people.

Finally, this study affords an opportunity to measure the
effects of expertise on visual attention. Subjects have a lifetime
of intensive training in attending to one species above all:
humans. In contrast, subjects have orders-of-magnitude less
experience attending to any other given species. The difference

Fig. 1. Diagram illustrating the sequence and timing of each trial in Exp 1–5.
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in performance between attention to humans and attention to
other animal species gives a measure of the importance of
expertise in training attention to animate inputs.

Results
Exp 1 was designed to test predictions i–iii (above) of the animate
bias hypothesis, Exp 2 was a replication of Exp 1, and Exp 3–5
were designed to test predictions iv–v.

The hit rate (percent correct) was used to assess accuracy,
because false alarms were so rare across the five experiments
(2% of all responses; SI Appendix 1.1). Reaction times (RTs) are
for hits.

Do Animals and People Recruit Preferential Attention? Yes. Changes
to animals and people were detected more often and more
quickly than changes to inanimate objects in Exp 1 and 2 (Fig.
3 A and B). More specifically, changes to animate targets
(animals and people) were detected faster than changes to
inanimate ones (plants, moveable artifacts, and fixed artifacts),
both in Exp 1 and its replication (Exp 2); animate vs. inanimate
target RTs: P � 10�10 and 10�15, respectively. Changes to
animate targets were detected 1–2 seconds faster than changes
to inanimate ones, and the effect size (r) associated with this
difference was large in both experiments (0.88 and 0.86).

The greater speed in detecting changes to animals and people
was not achieved at the expense of accuracy. On the contrary,
subjects were faster and more accurate for animate targets,
which elicited hit rates 21–25% points higher than inanimate
targets (Exp 1 and 2, r � 0.84 and 0.80; P � 10�8 and 10�10;
false-alarm rates were low, 0.92% and 1.6%). Overall, 89% of
changes to animate targets were correctly detected vs. 66% of
changes to inanimate ones. The animate advantage in speed and
accuracy remains strong, even when inanimates are compared
only to non-human animals (see Fig. 3; RT, r � 0.80 and 0.64,
P � 10�7 and 10�11; hits, r � 0.82 and 0.63, P � 0.0002).

Following convention, we reported RTs for hits only. How-
ever, this measure fails to capture cases in which a change to the
target was missed entirely; missing a change is a more severe case
of ‘‘change blindness’’ than being slow to notice one. Subjects
were change-blind more often for inanimate targets than for
animate ones (miss rates, 34% inanimate vs. 11% animate).
Because this is not reflected in mean RTs for hits, the difference
between animate and inanimate RTs underestimates the ani-
mate attentional advantage. Moreover, mean RTs can mask
important differences in the time course of change detection.

Fig. 3 addresses these concerns by showing, for each category,
the time course of change detection. The relationship between
time elapsed and total number of changes detected is plotted.
Steeper slopes indicate earlier change detection; higher asymp-
totes mean more changes were eventually detected (i.e., less
change blindness). Consistent with the hypothesis that animals
and people should undergo incidental monitoring so that
changes in their location and state can be rapidly detected, the
curves for the two animate categories have steeper slopes and
asymptote at higher levels than those for the three inanimate
categories. Moreover, there appear to be attentional capture as
well as monitoring effects.

Attentional Capture. The animate and inanimate curves diverge
quickly: there were more hits for animate than for inanimate
targets even for the fastest responses, ones in which changes were
detected in �1 second (Exp 1, hits 8.8% vs. 3.9%; P � 0.0025,
r � 0.52, no false alarms; Exp 2, hits, 3.8% vs. 1.6%, P � 0.002,
r � 0.48; one false alarm). This suggests that animates capture
attention in addition to eliciting more frequent monitoring. The
maximal difference between animate and inanimate detection
occurred at 3.5–4 elapsed seconds, a 33–37% point difference,
with an effect size of r � 0.93 (P values �10�14).

Do Animals and People Receive Preferential Attention Because They
Are More ‘‘Interesting?’’ In CD studies, interesting items are
detected faster than uninteresting ones (14, 18). When a separate

Fig. 2. Sample stimuli with targets circled. Although they are small (measured in pixels), peripheral, and blend into the background, the human (A) and elephant
(E) were detected 100% of the time, and the hit rate for the tiny pigeon (B) was 91%. In contrast, average hit rates were 76% for the silo (C) and 67% for the
high-contrast mug in the foreground (F), yet both are substantially larger in pixels than the elephant and pigeon. The simple comparison between the elephant
and the minivan (D) is equally instructive. They occur in a similar visual background, yet changes to the high-contrast red minivan were detected only 72% of
the time (compared with the smaller low-contrast elephant’s 100% detection rate).
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group of subjects rated how interesting each target was (SI
Appendix 1), interest ratings correlated with animacy (r � 0.60,
P � 10�7). But does this explain the animate attention effect?

No. Although they were correlated with animacy, interest

ratings do not predict RTs once one statistically controls for
whether the target is animate (partial r � �0.16, P � 0.20). In
contrast, animate targets elicit faster RTs, even after controlling
for interest ratings (partial r � �0.41, P � 0.001; see SI Appendix
1.2). The same result holds for hit rates (animacy, partial r �
0.37, P � 0.002; interest, partial r � 0.064, P � 0.60). Thus, the
animacy bias was not a side effect of animals and people being
more ‘‘interesting’’ targets, as judged by deliberative processes.
Fast, accurate change detection of animates results from a
category-driven process: animacy, not interest, predicts change
detection efficiency.

Is Preferential Attention to Animates a Side Effect of Differences in
Lower-Level Visual Characteristics? Does the animate attention
effect found in Exp 1 and 2 reflect nothing more than a confound
in the stimuli? Given that lower-level features (e.g., color,
luminance) can affect attention in simple visual arrays (19) and
more natural and complex scenes (20), it is important to
eliminate the hypothesis that, in the particular stimuli we used,
these features differed for animate vs. inanimate targets.

Target luminance, size (pixels), and eccentricity were entered
into a multiple regression model; none predicted RT or accu-
racy, either across or within domains (P values range from 0.2 to
0.9). To eliminate counterhypotheses invoking any potential
lower-level feature(s), Exp 3 and 4 were conducted.

Inverting photos perfectly preserves their lower-level stimulus
properties but makes identifying the semantic category to which
a target belongs more difficult (8, 18, 21). Further, scene
inversion sizably reduces the detection of changes to high-
relative to low-interest items (18) (but see ref. 22). If lower-level
properties are causing the animate attention advantage, then it
should appear even when photos are inverted. In contrast, if the
attentional bias is category-driven, then manipulations that
interfere with categorization but preserve lower-level percep-
tual features should eliminate the animate change-detection
advantage.

Exp 3 was identical to Exp 1 and 2, except the photos were
inverted. The procedure and stimuli for Exp 4 were also the
same, except target category identification was disrupted not by
inverting but by blurring each photo with a Gaussian blurring
function in Adobe Photoshop (see SI Appendix 2). This preserves
many lower-level characteristics (although not as perfectly as
inversion) but disrupts object recognition more than inversion
does. Both manipulations were used, because each has advan-
tages that the other lacks. Each method succeeded in disrupting
recognition; compared with Exp 1 and 2, RTs were slower in Exp
3 and 4, and accuracy was worse overall in Exp 4 (SI Appendix
1.3). If lower-level characteristics were causing the animate
attention effect, then it should still appear in Exp 3 and 4. It did
not (see Fig. 4).

Specifically, inverting scenes eliminated the animate advan-
tage in detection speed (P � 0.25). Changes to inverted people,
animals, fixed artifacts, and plants elicited comparable mean
detection times (Fig. 4A; SI Appendix 1.4). When inverted,
accuracy was comparable for fixed artifacts, plants, people, and
animals. (Compared with other inanimate targets, accuracy for
inverted moveable artifacts was disproportionately low, a pattern
not seen in the upright conditions; SI Appendix 1.5). This is in
contrast to the pattern for upright scenes, where animate beings
showed a consistent speed and accuracy advantage compared
with all inanimate categories.

Blurring upright scenes also eliminated the animate advantage
in detection speed (P � 0.17). There was no animate advantage
in accuracy either. In fact, the reverse was true: in the blur
condition, accuracy was greater for inanimate objects (Fig. 4B;
SI Appendix 1.6).

Inversion and blurring disrupt recognition, which is necessary
for targets to be identified as animate vs. inanimate, while

Fig. 3. Changes to animals and people are detected faster and more
accurately than changes to plants and artifacts. Graphs show proportion of
changes detected as a function of time and semantic category. (Inset) Mean RT
for each category (people, animals, plants, moveable/manipulable artifacts,
and fixed artifacts). (A) Results for Exp 1. Animate targets: RT M � 3,034 msec
(SD, 882), hit rate M � 89.8% (SD, 7.4). Inanimate targets: RT M � 4,772 msec
(SD, 1,404), hit rate M � 64.9% (SD, 15.7). (B) Results for Exp 2. Animate
targets: RT M � 3,346 (SD, 893), hit rate M � 88.7% (SD, 8.0). Inanimate RT M �
4,996 (SD, 1,284), hit rate M � 67.5% (SD, 16.5). (C) Results for Exp 5. RT:
animate M � 2,661 msec (SD, 770). Hit rate, animate vs. vehicle: 90.6% (SD, 7.8)
vs. 63.5% (SD, 18.8), P � 10�15.
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preserving all (inversion) or some (blurring) lower-level stimulus
characteristics. That these two manipulations eliminated the
animate detection advantage found in Exp 1 and 2 indicates
the animate attentional advantage depends on recognition of the
target’s semantic category. It was not a side effect of incidental
differences in contrast, visual complexity, or any other lower-
level property of the stimuli used. (Additional controls show that
the animate advantage also remains strong when controlling for
potential differences in scene backgrounds; see SI Appendix 1.7).

Is Preferential Attention to Animates a Consequence of Experience
with Motion? The animate monitoring hypothesis proposes that
animates are attended by virtue of category-specific attentional
mechanisms that are triggered by properties of animals and
humans, not by mechanisms that attend to anything often seen
in motion. Vehicles were chosen as a control category, because
they move yet are not animals.

Vehicles are seen in motion every day, and the failure to
monitor that motion has life-or-death consequences. Indeed, this

expertise might give vehicles a detection advantage over other
inanimate objects. But the prediction that animate inputs will be
closely attended is not based on expertise-driven attention. It is
based on the hypothesis that the visual system is designed to
monitor animates because of their importance ancestrally. Con-
sequently, animals and people should be monitored more closely
than vehicles, despite our ontogenetic experience of vehicular
motion and its importance to survival in the modern world. To
test this, we conducted Exp 5, which specifically compared
detection of animate targets to vehicles.

Of the artifact targets, 24 were vehicles (on roads, rivers, etc.),
and 24 were artifacts that do not move on their own (e.g.,
lampposts, keys). To see whether there is any effect of implied
motion on attention (23–25) due not to the target’s category but
rather to representations of motion or momentum (e.g., sitting
vs. walking), half the people and half the animals were in motion,
and half were not. Thus, there were static and dynamic animate
targets and static (lampposts, keys) and dynamic (vehicles)
inanimate targets. Otherwise, the procedure was the same as for
Exp 1.

The results of Exp 5 are shown in Fig. 3C. Accuracy for
vehicles and static artifacts was low (and comparable), with
changes to vehicles detected faster than changes to static artifacts
(P � 0.00072, r � 0.52). Nevertheless, changes to animals and
people were detected �1 second faster than changes to vehicles,
and the effect size was large, r � 0.82 (animate vs. vehicles, P �
10�11). Even so, this underestimates the animate attentional
advantage over vehicles, because accuracy for animate targets
was 27% points higher than for vehicles, another large effect size,
r � 0.87 [animate vs. vehicle, 90.6% (SD, 7.8) vs. 63.5% (SD,
18.8), P � 10�12]. That is, subjects were change blind �36% of
the time for vehicles but �10% of the time for animals and
people. Detection of animate targets was better than vehicle
targets at all time intervals, even �1 second.

Compared with vehicles, the speed and accuracy advantage for
non-human animals was just as large as for people (animals vs.
vehicles, RT, r � 0.80, P � 10�10; hits, r � 0.84, P � 10�14; people
vs. vehicles, RT, r � 0.78, P � 10�9; hits, r � 0.88, P � 10�16).
Moreover, the advantage for non-human animals remains just as
large if the vehicle category is restricted to include only cars and
trucks, the vehicles that subjects need to monitor most often
(RT, r � 0.79, P � 10�9; hits: r � 0.85 P � 10�15).

To make sure these effects were not due to incidental differ-
ences in low-level visual characteristics, we conducted an inver-
sion control for Exp 5 (analogous to Exp 3). Although there were
some differences between categories on inversion, the animate
attentional advantage in Exp 5 remains large and significant
when these potential differences in low-level features are con-
trolled for (RT, r � 0.74, P � 10�7; hits, r � 0.88, P � 10�12; SI
Appendix 1.8). The same is true when one controls for potential
differences in scene backgrounds (SI Appendix 1.7).

It is known that the human visual system has a bias to detect
motion, and that momentum is represented even from still
pictures (23–25). Are changes to animals and people detected
faster and more accurately merely as a side effect of attention to
objects in motion, animate or not?

No. For the animate monitoring effect to be a side effect of
motion detection, there would have to be a CD advantage for
targets in motion over stationary ones, even for the categories
animal and person. Fig. 3C shows this was not the case; for animals
and people, CD was just as fast and accurate when their pose was
stationary as when it was dynamic (stationary vs. dynamic; hit RT
means 2,660 msec (SD, 968) vs. 2,661 (SD, 1,142); hit rates, 91% for
both). Thus implied motion does not cause a category-independent
increase in attentional monitoring.

Because there were no category-independent effects of rep-
resentational momentum on change detection, such effects
cannot explain the CD advantage of vehicles over static artifacts.

Fig. 4. Disrupting recognition eliminates the advantage of animates in
change detection, showing that the animate advantage is driven by category,
not by lower-level visual features. Graphs show proportion of changes de-
tected as a function of time and category when recognition is disrupted.
(Inset) Mean RT for each category. (A) Results for Exp 3 using inverted stimuli.
RT, animate M � 5,399 (SD, 2,139), inanimate M � 5,813 (SD, 2,405). (See SI
Appendices 1.4 and 1.5.) (B) Exp 4, blurred stimuli. RT, animate M � 5,792 (SD,
2,705), inanimate M � 5,337 (SD, 2,121). Accuracy; animate M � 45.2% (SD,
15.1), inanimate M � 56.7% (SD, 13.5), greater accuracy for inanimates; P �
0.0001, r � 0.67.
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This suggests that the vehicle vs. static advantage was caused by
greater monitoring of objects identified as vehicles (whether in
motion or not).

Better change detection for non-human animals than for
vehicles demonstrates a category-based dissociation between
recognition and monitoring. In directed categorization tasks, the
visual system can rapidly detect the presence of both animals and
vehicles in a natural scene (26), even in the near absence of
attention (27). But the large difference in change detection
demonstrated here shows that the attentional system spontane-
ously monitors animals more than vehicles (or other inanimates),
even when there is no instruction to do so.

Is There an Effect of Ontogenetic Expertise? The CD advantage of
vehicles over other inanimate objects is consistent with a modest
expertise effect, although it could also be a side effect of an
animate attention bias that is weakly evoked by vehicles (people
make vehicles move; psychophysically, vehicular motion exhibits
the contingent reactivity of animate motion) (28). But if expe-
rience were having a major effect on incidental attention, we
would see a large CD advantage for vehicles over animals.
Instead, the reverse is true. There would also be a large CD
advantage for humans over non-human animals, a prediction
that is also falsified.

In modern environments, encounters with other humans are
more frequent and have greater consequences than encounters
with non-human animals. So how much (or little) does ontogenetic
expertise with humans promote change detection, compared with
non-human animals? The curves for animals and humans are
almost identical in Exp 5 (Fig. 3C), and they track each other closely
for time intervals �3–4 seconds in Exp 1 and its replication (Exp
2). More specifically, in Exp 1, 2, and 5, there was no speed
advantage for humans over animals (animals vs. humans, mean RT
for hits, P � 0.83, 0.46, 0.07; animals were faster). Accuracy was the
same in Exp 5 (P � 0.07) but higher for humans than for animals
in Exp 1 and its replication (Exp 1, P � 0.0003, r � 0.61; Exp 2, P �
10�7, r � 0.76).

Close attention to non-human animals makes sense in ances-
tral environments but not in the ontogenetic environment ex-
perienced by our subjects. Moreover, subjects are visually
trained on the human species many orders of magnitude more
than on any other species. If expertise acquisition was a function
of frequency of exposure and stimulus importance, then change
detection for human targets should be orders of magnitude
better than for non-human animal targets. Yet there was no
speed advantage for detecting changes to humans, and a lifetime
of exposure to humans led only to an inconsistent advantage in
accuracy: more changes were detected when the target was a
person than an animal in Exp 1 and its replication but not in Exp
5. The limited differences in outcome compared with massive

differences in training indicate that other causes are at play aside
from, or in addition to, training. These results, like the animal–
vehicle difference, call into serious question ontogenetic expla-
nations that invoke only domain-general expertise learning.

Conclusion
Changes to animals, whether human or non-human, were detected
more quickly and reliably than changes to vehicles, buildings, plants,
or tools. Better change detection for non-human animals than for
vehicles reveals a monitoring system better tuned to ancestral than
to modern priorities. The ability to quickly detect changes in the
state and location of vehicles on the highway has life-or-death
consequences and is a highly trained ability; indeed, driving pro-
vides training with feedback, a situation that should promote the
development of expertise-derived selection criteria. Yet subjects
were better at detecting changes to non-human animals, an ability
that had life-or-death consequences for our hunter–gatherer an-
cestors but is merely a distraction in modern cities and suburbs. This
speaks to the origin of the selection criteria that created the animate
monitoring bias.

The selection criteria responsible were not goal-derived: the
only instructed goal was to detect changes (of any kind), and
there was nothing in the structure of the task to make animals
more task-relevant than inanimate objects (if anything, the
reverse was true: there were more changes to inanimates than to
animates). Nor were they expertise-derived: in the modern
world, detecting changes in animals is an inconsequential and
untrained ability compared with detecting changes in vehicles.
Taken together, the results herein implicate a visual monitoring
system equipped with ancestrally derived animal-specific selec-
tion criteria. This domain-specific subsystem within visual at-
tention appears well designed for solving an ancient adaptive
problem: detecting the presence of human and non-human
animals and monitoring them for changes in their state and
location.

Materials and Methods
Five CD experiments were conducted, each involving a different
set of subjects (SI Appendix 1). The 70 scenes used in Exp 1–4
are shown in SI Appendices 3–7. The 96 scenes used in Exp 5 are
shown in SI Appendices 8–11; there were 48 with artifact targets
and 48 with animate targets (24 people and 24 animals). Of the
artifact targets, 24 were vehicles, and 24 were artifacts that do not
move on their own.
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SI Appendix 1

Method

Subjects.  Subjects were undergraduates at the University of California, Santa Barbara, with

normal or corrected-to-normal vision.  Exp 1: n=30; Exp 2: n=38; Exp 3: n=28; Exp 4: n=28;

Exp 5: n=38.

Procedure.  In each trial, a black fixation cross appeared in the middle of a 15-inch computer

monitor for 500 ms.  A scene was then presented for 250 ms followed by a white screen for

250 ms.  The alternate version of the scene was then presented for 250 ms and again followed

by a white screen for 250 ms (Fig. 1).  This series of presentations was repeated until the

subject indicated (by mouse click) whether there was a changing object in the scene.  The

response and its latency were both recorded by the computer.  This process continued until

subjects had viewed and responded to all 70 scenes.  The scene order was randomly assigned

for each subject.  One-third of trials were catch trials, in which nothing in the scene changed;

which photos were catch trials was randomized across subjects.

An independent set of 26 subjects saw the same scenes as subjects in Exps 1 and 2,

with the target item circled.  They rated how interesting each target object was, and how

consistent it was with its surrounding scene, using 7-point scales (1 = not interesting, not

consistent, 7 = highly interesting, highly consistent).

Stimuli.  Exps 1-4.  Seventy scenes were taken from a commercially available CD-ROM

collection of digital images (for the full set, see SI Appendices 3-7). The target object in each

scene was from one of the five categories.  Scenes were complex and natural, so most

contained items from nontarget categories as well (e.g., a scene with a person target might
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include plants, animals, and both kinds of artifacts).  Each category was represented by 14

scenes with a target object from that category.  However, one item from the animal set was

later discovered to have a confounding visual change and was excluded from consideration in

all statistical analyses.  The scenes included urban and rural settings for all the categories.

The target objects were as follows. People: both sexes and various ages, in a variety of

orientations with respect to the observer. Animals: mammals, reptiles, birds, and insects.

Plants: mostly trees and shrubs, but some potted flowers, fruits, and vegetables.

Moveable/manipulable artifacts: common human-made tools and vehicles, e.g., stapler,

wheelbarrow, boat, car.  Fixed artifacts: artifacts of fixed location, often large enough to be

construed as topographical landmarks, e.g., building, windmill, flag.

Targets were rated as semantically consistent: the mean consistency rating was above

the midpoint for each category, and ranged from 4.09 (plants) to 5.23 (moveable artifacts).

Although plants were judged consistent, their mean rating was lower than for the other four

categories; however, given that inconsistency recruits attention (1), this would bias the

stimuli against finding an animate advantage.

The images were 27 cm in height, 20.2 cm in width, and viewed from a distance of

approximately 50 cm.  When the target object was removed from a scene, it was replaced

with surrounding background.  The target objects occurred in a diverse range of positions.

The use of natural scenes constrained the majority of the target objects, regardless of

category, to the lower half of the image.  Targets were, on average, 2.2 cm wide by 2.6 cm

high.  The target objects ranged in size from 0.5 cm wide by 0.6 cm high (a person) to 6.2 cm

wide by 7.4 cm high (a tree).   There were no significant differences between the animate and

inanimate stimuli with respect to the target objects’ luminance (P = 0.34), size (P = 0.08), or

eccentricity (P = 0.92).
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Exp 4. A Gaussian blur function was applied to each scene from Exp 1, using

Photoshop 5.5 at a radius setting of 6.0 pixels.  Examples are shown in SI Appendix 2.

Exp 5.  Ninety-six images were employed, 49 of which were drawn from the previous

stimuli set and the remainder drawn from the same CD-ROM collection (for full set, see SI

Appendices 8-11).   The images were the same size and presented under the same viewing

conditions as in the prior four experiments.  The targets averaged 1.97 cm in width and 2.00

cm in height.  The targets ranged in size from 0.52 cm wide and 0.37 cm high (a horse) to

2.22 cm wide and 7.44 cm high (a person).  Again, there were no significant differences

between the animate and inanimate stimuli in size (P = 0.28) or eccentricity (P = 0.46).

Inanimate objects were significantly higher with respect to luminance (P = 0.001); this,

however, would bias the stimuli against the animate monitoring hypothesis [all else equal,

higher luminance evokes greater visual attention (2)].

Analyses

There is no change to detect in the first 500 ms (because the scene with a change has

not yet appeared on the screen).  Reported reaction times do not reflect that 500-ms period.

Preliminary analyses showed no difference by category in detection of deletion-

addition and left-right orientation changes, so these two types of change trials were collapsed

for further analyses.  When comparing responses to different semantic categories, each

subject served as his or her own control (paired t tests). Reported P values are two-tailed.

1. False alarm rates: Exp 1: 0.92% (19/2,070); Exp 2: 1.6% (41/2,622); Exp 3: 1.04%

(20/1,932); Exp 4: 3.99% (77/1,932); Exp 5: 2.6% (96/3,648).

2.  Animacy or interestingness of target?  For this analysis, the dependent variable was the

mean reaction time for each scene (collapsed over Exps 1 and 2). A stepwise multiple
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regression shows that animacy accounts for 31.0% of variance in RT; adding interest ratings

increases it only slightly, to 32.7% (P for ΔF = 0.20). In contrast, adding animacy at step 2

increases the variance explained significantly, from 19.2% (for interest only) to 32.7% (P for

ΔF = 0.001).  The same pattern holds for hit rates: animacy explains 22.5% of variance and

adding interest ratings increases this nonsignificantly to 22.8% (P for ΔF = 0.60).  In contrast,

adding animacy at step 2 increases variance explained from 10.8% to 22.8% (P for ΔF =

0.002).

3.  Inversion (Exp 3): RT M = 5985 (SD 2,043), Exp 1 and 2 vs. Exp 3: P = 0.0003; accuracy

M = 77.6% (SD 10.8), P = 0.64 (compared to upright, accuracy was worse for inverted

animates but not for inverted inanimates). Low-pass filtered (Exp 4): RT M = 5,977 (SD

2,161), Exps 1 and 2 vs. Exp 4: P = 0.0008; accuracy M = 52.1% (SD 12.7), Exps 1 and 2 vs.

Exp 4: P = 10-17.

4.  When inverted, moveable/manipulable artifacts were detected more slowly and less

accurately than other inanimate objects.  Despite this, there still was no overall animate RT

advantage in Exp 3.  If inverted moveable artifacts are considered anomalous and excluded

from the analysis [yielding RT M = 5,246 (SD 1,925) for inanimates], the lack of an animate

bias for inverted scenes is even more apparent: P = 0.65.

5.  Because accuracy for inverted moveable/manipulable artifacts was disproportionately low,

changes to inverted animate targets were detected more frequently than changes to inverted

inanimate ones, taken as a group.  But, as Fig 4a shows, this did not reflect a general animate

advantage. It was caused by worse accuracy for inverted moveable artifacts compared to all

other categories, including other inanimate targets [within inanimates: moveable vs.

plants+fixed, P =10-6, r = 0.80]. If inverted moveable artifacts are considered anomalous and

eliminated from analyses, the accuracy figures for inverted inanimate targets (plants and
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fixed artifacts) and animate targets are about the same: animate M = 77.7% (SD 14.0),

inanimate M = 74.5% (SD 17.6), P = 0.21.

6. There was no difference in the overall pattern of reaction times between the inversion and

blur conditions (ANOVA, two conditions (inversion, blur) × five semantic categories: no

main effect of condition: P = 0.82).  As expected, however, their pattern was different from

that for the upright, clear scenes, due to the animate advantage in the upright scenes [2 × 5,

main effect of condition (Exps 1 and 2 vs. Exps 3  and 4): P = 10-5, eta = 0.38)].

7.  Controlling for scene background.  For reasons of ecological validity, complex natural

scenes are most appropriate for testing for an animate attentional advantage.  This entails

detecting a target in the context of a background scene. Differences in change detection as a

function of whether the target’s background scene is distracting or “busy” have not been

reported in the literature. Nevertheless, we thought it would be prudent to test whether some

unknown confound in scene backgrounds is driving the effects that we are attributing to

target animacy.

Inversion shows that incidental differences in how “busy” the scene background is

due to low level features cannot explain the animate attention advantage.  But what about

busyness due to high-level object recognition?  One could imagine, for example, that changes

to a target might be more difficult to detect when the background is cluttered with objects.

Equally, detecting changes to a target may also be more difficult when the background

contains interesting objects that compete for attention with the target.  Indeed, if category-

driven attentional effects exist, as we are claiming, then changes to a target might be more

difficult to detect when there are animals or people in the background scene.  This last

possibility underlines an important point: How busy or interesting a scene is depends on

properties of the observer’s attentional system, many of which are still unknown.  For this
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reason, subjective ratings or measures that reflect the operation of the attentional system are

needed to quantify how busy or interesting a background scene is.

To control for potential effects of this kind, 52 subjects were asked to rate scene

backgrounds, that is, upright scenes with the targets absent (these were the “deletion” scenes

used for the deletion-addition condition of the change detection experiment; thus surrounding

background filled the space where the target had been).  The subjects were drawn from the

same population, but none had rated targets or participated in the change detection

experiments.  Twenty-six subjects rated the 70 scene backgrounds used in Exps 1 and 2; the

other 26 rated the 96 scene backgrounds used in Exp 5.  Using a 1-7 scale (1 = not at all),

subjects rated each scene on “how busy” it is; after cycling through all the scenes they also

rated each on “how interesting” it is (with busy-interesting order counterbalanced across

subjects).

Most scene backgrounds were not viewed as very busy or interesting (mean ratings

were at or below the scale midpoint, most ranging from 2.8-3.8).  Regression analyses were

conducted in which the dependent variable was either (i) the mean reaction time for detecting

the target in a scene, or (ii) the mean hit rate for the target in a scene. (Because Exps 1 and 2

were identical, values for those scenes were computed from responses of all subjects in those

experiments.)  The three independent variables were (i) whether the target was animate or

not, (ii) how busy the scene background was, and (iii) how interesting the scene background

was.  The goal was to determine whether reaction times were faster and hit rates higher for

animate than inanimate targets, after controlling for how busy and how interesting the scene

backgrounds were.  Partial correlations show the unique effects of each variable, when all the

others have been controlled for.

Results for Exps 1 and 2.  After controlling for potential differences in scene

background, animate targets still elicited significantly faster reaction times and higher hit
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rates than inanimate targets [RT: partial r = -0.57, P = 10-6 (sr = -0.55). Hits: partial r = 0.46,

P = 10-4 (sr = 0.45)].  β coefficients show that this corresponds to an advantage of 2,322 ms

and 15.5 percentage points for animates, controlling for background.  In contrast, there were

no significant effects of scene background on the speed or accuracy with which targets were

detected, either zero order or after controlling for animacy (RT, hits: for busy, Ps = 0.12,

0.22; for interesting, Ps = 0.80, 0.21).

Results for Exp 5.   Background effects cannot account for the animate attentional

advantage found in Exp 5 either.  After controlling for differences in scene background, the

advantage in speed and accuracy for animate over inanimate targets remained large and

significant in Exp 5 [RT: partial r = -0.59, P = 10-9 (sr = -0.53). Hits: partial r = 0.64, P =10-11

(sr = 0.59)].  Based on β coefficients, this corresponds to an advantage of 2,040 ms and 27

percentage points for animates over inanimates.

Non-human animals versus vehicles, Exp 5.  The contrast between non-human

animals and vehicles is important to our argument that the animate attentional advantage is

produced by a phylogenetically ancient evolved mechanism, rather than by domain-general

expertise.  We therefore wanted to confirm that changes to non-human animals are detected

faster and more accurately than changes to vehicles, after the potential effects of background

busyness and background interestingness are statistically removed. (In the regression above,

animate targets included people as well as non-human animals, and inanimates included

artifacts in addition to vehicles.)  To address this question, we conducted regression analyses

in which the only animate targets were non-human animals and the only inanimate targets

were vehicles.  The results remained the same: Changes to non-human animals were detected

faster and more accurately than changes to vehicles (with large effect size), even after

controlling for differences in scene background [RT: partial r = -0.65, P = 10-6 (sr = -0.54).

Hits: partial r = 0.56, P = 0.00006 (sr = 0.53)]. The attentional advantage for non-human
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animals over vehicles, controlling for scene background, corresponds to 1,492 ms and 24

percentage points.  This shows that non-human animals are detected faster than vehicles, and

that this difference cannot be explained by incidental differences in scene backgrounds.

Should future researchers monitor scene background?  Future researchers designing

change detection experiments with complex natural scenes may be interested in whether they

need to take account of scene background in their experimental designs.  Controlling for

whether the target was animate, scene background had no independent effects on change

detection for the scenes used in Exps 1 and 2, but it did for the scenes used in Exp 5.  After

controlling for all other variables in Exp 5, busyness of background was correlated with

increased reaction time and decreased accuracy in detection of targets [RT: partial r = 0.38, P

= 0.00014 (sr = 0.30). Hits: partial r = -0.33, P = 0.001 (sr = -0.25)].  Surprisingly, how

interesting the scene background was exerted an effect in the opposite direction from

busyness: Controlling for busyness and animacy, targets were not detected more accurately,

but they were detected faster, when the scene background was more interesting [RT: partial r

= -0.32, P = 0.0017 (sr = -0.24). Hits: partial r = 0.17, P = 0.11).

This means that how busy and how interesting a background scene is can affect the

speed and accuracy with which changes to a target are detected, independent of that target’s

semantic category or other properties.  Our analysis shows that background effects cannot

explain the animate attentional advantage.  But backgrounds should continue to be monitored

in future research, because they can have an independent effect on change detection.

Conclusion, scene background analyses.  The animate attentional advantage remains

significant and large, even when controlling for how busy and how interesting the target’s

background scene is.  This is true even when one compares non-human animals to vehicles.
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8.  Controlling for low level visual properties in Exp 5.  As for Exps 1 and 2, we wanted to

make sure that the animate detection advantage in Exp 5 was independent of any incidental

differences in the low level visual properties of scenes.

Target size, eccentricity, and luminance were regressed onto the mean reaction time

and hit rate for each scene in Exp 5. Target size and eccentricity did not predict scene

reaction times or hit rates. Changes to less luminant targets were detected a little faster and

more accurately in Exp 5 (RT: P = 0.058. Hits: P = 0.031). The literature consistently reports

the opposite—that more luminant targets recruit attention (2), so the fact that change

detection was slightly better for less luminant targets probably reflects the animate attentional

advantage (animate targets were less luminant in Exp 5, see above).

To control for incidental differences due to all possible low level visual properties, we

conducted a change detection experiment (n = 31) using inverted scenes from Exp 5

(analogous to Exp 3).  Inversion disrupts high level object recognition while perfectly

preserving all low level visual properties of the scenes.

That inversion disrupted target recognition is most evident from the decrease in hit

rates compared to upright scenes of people (-32 points, from 92% upright to 60% inverted),

animals (-24 points, 89% vs. 65% ), and vehicles (-16 points, 63% vs. 47%). (Static artifacts:

-7 points, from an (already low) figure of 59% vs. 52%.).

For the scenes used in Exps 1 and 2, inversion had eliminated the animate detection

advantage.  But the inverted scenes in Exp 5 yielded some animate-inanimate differences in

reaction times and hit rates, though smaller than those found for the upright scenes of Exp 5.

The hit rates for inverted people and non-human animals were comparable, but they were

higher than those for inverted vehicles and static artifacts.  Reaction times showed the same

pattern: not different for inverted people and animals (3,578 and 3,377 ms, respectively), but
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RTs for both animate categories were a little faster than those for inverted vehicles and static

artifacts (3,989 and 3,983 ms, respectively).

Inversion disrupts high level object recognition, but does not wipe it out completely,

so these differences for inverted scenes could represent the animate attentional advantage

kicking in when an inverted person or animal is recognized as such.  Alternatively, the

advantage in change detection for inverted animals and people could represent nothing more

than incidental differences in low level visual properties of the scenes in which they

appeared.  If so, then we must ask whether the animate attentional advantage found in Exp 5

is real, or is it merely an artifact of differences in low level visual features of the scenes we

happened to use as stimuli?

To answer this question, we reanalyzed the data from Exp 5 (upright scenes) using the

inversion results to control for low level visual features, and did so in a way that would

maximally jeopardize the animate monitoring hypothesis. We did this by making the

conservative assumption that all the differences in change detection between inverted scenes,

including the differences between inverted animate and inverted inanimate targets—were due

to differences in low level visual features of the scenes (and not to differences in animate

monitoring).  In this view, a scene’s inversion score reveals the extent to which low level

stimulus properties of that scene and target make it easier or more difficult to detect changes

in the target.  For the purposes of this analysis, the inverted target’s semantic category

(person, animal, vehicle, artifact) is assumed to play no role in change detection.

For each scene, the advantage or disadvantage in reaction time due to low level

properties was quantified by calculating the extent to which the inverted scene’s mean RT

deviates from the mean RT for all inverted scenes (the grand mean).  For example, a mean

RT for inverted Scene A that is 150 ms slower than the mean RT for all inverted scenes

would indicate a disadvantage in reaction time due to low level features.  To correct for this
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disadvantage, 150 ms would therefore be subtracted from each subject’s RT for the upright

Scene A they saw in Exp 5.  Similarly, an inverted RT for Scene B that is 200 ms faster than

the mean RT for all inverted scenes would indicate an advantage in reaction time due to low

level features.  To correct for this advantage, 200 ms would be added to each subject’s RT for

the upright Scene B in Exp 5.  Applying these corrections to the results for the upright scenes

in Exp 5 eliminates any advantage or disadvantage in change detection resulting from low

level visual features.

The system for correcting hit rates was analogous, but modified to accommodate the

fact that hits are binary (see below for details)*.

Note that this method of correcting for low level features is strongly biased against the

animate monitoring hypothesis.  It assumes that all differences in inverted scenes are due to

low level features.  In reality, however, it seems likely that some fraction of these differences

result from animate attentional monitoring (given that at least some inverted targets will

eventually be recognized as animals or people).  Using inversion scores to correct for low

level features therefore has the side-effect of also removing legitimate effects of animate

monitoring in response to inverted targets from effects of animate monitoring in response to

the upright targets in Exp 5.

Nevertheless, the animate attentional advantage remained large and significant even

after the correction for low level features was applied to the results of Exp 5. Changes to

animate targets were detected more than a second faster than changes to inanimate targets

(2,717 ms vs. 3,978 ms, r = 0.74, P = 10-7), and with much greater accuracy (hits: 88% vs.

63%, r = 0.88, P = 10-12).  Moreover, changes to non-human animals are still detected faster

and more accurately than changes to vehicles, even when corrected scores are used (2,856 ms

vs. 3,754 ms, r = 0.42, P = 10-5. Hits 79% vs. 67%, r = 0.56, P = 0.0002).
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The corrected scores by category were 2,578 ms and 97% hits for people; 2,856 ms

and 79% hits for non-human animals; 3,754 ms and 67% hits for vehicles; 4,201 ms and 58%

hits for static artifacts.  The uncorrected scores for people and animals in Exp 5 were

indistinguishable, but these corrected scores seem to indicate a detection advantage for

people over non-human animals.  A more likely interpretation, however, is that the visual

system is designed such that animals in motion are particularly easy to recognize (and,

therefore, likely to recruit attention), even in inverted scenes, which would bias the correction

procedure disproportionately against non-human animals. Indeed, when scenes were inverted,

changes to animals in motion were detected 400-800 ms faster and 11-25 percentage points

more accurately than changes to inverted targets from any other category, including humans

(inverted people in motion were next best, but still 400 ms slower and 11 points less

accurate).  Because the inversion correction removes real effects of animate monitoring along

with nuisance effects of low level features, it will remove real effects of animate monitoring

disproportionately from non-human animal targets precisely to the extent that inverted

animals in motion are recognized and monitored better than other inverted targets.

*Details of low-level visual feature correction for hits.  Each subject either detects the change

in a scene or not (a binary score 1 or 0 for upright scenes), so subtracting deviation scores for

inverted scenes (e.g., +4 points, -7 points) would result in a measure without a direct

interpretation as “percent of hits detected”.  So for hits, inversion results were used to

calculate deviations at the category level, where a scene’s category is defined by the target’s

semantic category [i.e., static person, dynamic person, static animal, dynamic animal, static

artifact, dynamic artifact (i.e., vehicle)].  The correction factor was based on the extent to

which the mean hit rate for a given category of inverted scenes deviates from the mean hit

rate for all inverted scenes. For example, a mean hit rate for inverted “static artifact” scenes
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that is 5 points lower than the mean hit rate for all inverted scenes would indicate a

disadvantage in change detection for that category due to low level features.  To correct for

this disadvantage, 5 points would be added to each subject’s mean hit rate for (upright) static

artifacts in Exp 5.  Likewise, a mean hit rate for inverted “static people” scenes that is 8

points higher than the mean hit rate for all inverted scenes would indicate an advantage in

change detection for that category due to low level features.  To correct for that low level

advantage, 8 points would therefore be subtracted from each subject’s mean hit rate for

(upright) static people in Exp 5.

1. Hollingworth A,  Henderson J (2000) Visual Cognit 7: 213-235.

2. Turatto M, Galfano G (2002) Vision Res 40: 1639-1644.



Stimuli Used in Experiments 1 – 4

People

*Reaction Time and Percent Correct Averaged Across Experiments 1 and 2

RT 2313  PC 100 RT 2529  PC 100

RT 2559  PC 100 RT 2677  PC 100



People

RT 2891  PC 100 RT 3657  PC 90

RT 3681  PC 96 RT 3987  PC 100

RT 4287  PC 97 RT 4361  PC 98



People

RT 4751  PC 98 RT 4802  PC 91

RT 4912  PC 91 RT 5921  PC 84



Stimuli Used in Experiments 1 – 4

Animals

*Reaction Time and Percent Correct Averaged Across Experiments 1 and 2

RT 2249  PC 100 RT 2514  PC 96

RT 2737  PC 98 RT 3345  PC 96



Animals

RT 3483  PC 100 RT 3902  PC 92

RT 4004  PC 87 RT 4068  PC 46

RT 4178  PC 88 RT 4260  PC 64



Animals

RT 4528  PC 57 RT 4553  PC 91

RT 4908  PC 29
(excluded from analyses)

RT 6543  PC 50



Stimuli Used in Experiments 1 – 4

Plants

*Reaction Time and Percent Correct Averaged Across Experiments 1 and 2

RT 2745  PC 93 RT 3347  PC 92

RT 4290  PC 82 RT 4478  PC 80



Plants

RT 4791  PC 72 RT 4906  PC 69

RT 5356  PC 77 RT 6407  PC 76

RT 6506  PC 41 RT 7352  PC 31



Plants

RT 7834  PC 57 RT 8543  PC 49

RT 9066  PC 36 RT 9809  PC 35



Stimuli Used in Experiments 1 – 4

Moveable/Manipulable Artifacts

*Reaction Time and Percent Correct Averaged Across Experiments 1 and 2

RT 3856  PC 88 RT 3870  PC 70

RT 3909  PC 88 RT 4168  PC 88



Moveable/Manipulable Artifacts

RT 4717  PC 96 RT 5007  PC 90

RT 5619  PC 60 RT 6252  PC 90

RT 7174  PC 37 RT 8075  PC 59



Moveable/Manipulable Artifacts

RT 8171  PC 23 RT 8286  PC 35

RT 9279  PC 33 RT 9799  PC 33



Stimuli Used in Experiments 1 – 4

Fixed Artifacts

*Reaction Time and Percent Correct Averaged Across Experiments 1 and 2

RT 3771  PC 94 RT 4062  PC 74

RT 4647  PC 77 RT 4730  PC 80



Fixed Artifacts

RT 5034  PC 63 RT 5385  PC 91

RT 5662  PC 76 RT 6254  PC 77

RT 6264  PC 68 RT 6276  PC 84



Fixed Artifacts

RT 6977  PC 51 RT 7253  PC 71

RT 7880  PC 73 RT 11008  PC 22



Stimuli Used in Experiment 5

Static People

RT 1653  PC 100 RT 1722  PC 100

RT 1789  PC 96 RT 1916  PC 100



Static People

RT 2317  PC 88 RT 2664  PC 100

RT 2664  PC 100 RT 3021  PC 78

RT 3304  PC 94 RT 3410  PC 95



Static People

RT 4068  PC 87 RT 4624  PC 86



Category-specific attention for animals
reflects ancestral priorities not expertise

Stimuli Used in Experiment 5

Dynamic People

RT 1355  PC 100 RT 1468  PC 96

RT 2173  PC 96 RT 2409  PC 90



Dynamic People

RT 2432  PC 83 RT 2767  PC 95

RT 2947  PC 92 RT 3323  PC 87

RT 3557  PC 100 RT 3728  PC 97



Dynamic People

RT 4255  PC 88 RT 4465  PC 75



Stimuli Used in Experiment 5

Static Animals

RT 1473  PC 90 RT 1489  PC 100

RT 1865  PC 95 RT 1998  PC 100



Static Animals

RT 2113  PC 95 RT 2385  PC 100

RT 2941  PC 54 RT 3183  PC 92

RT 3247  PC 86 RT 3786  PC 62



Static Animals

RT 3878  PC 90 RT 4502  PC 92



Category-specific attention for animals
reflects ancestral priorities not expertise

Stimuli Used in Experiment 5

Dynamic Animals

RT 1502  PC 100 RT 1696  PC 100

RT 1866  PC 100 RT 2127  PC 96



Dynamic Animals

RT 2392  PC 92 RT 2419  PC 100

RT 2670  PC 73 RT 2826  PC 78

RT 2851  PC 88 RT 2934  PC 81



Dynamic Animals

RT 2974  PC 89 RT 3388  PC 88



Stimuli Used in Experiment 5

Non-vehicle Artifacts

RT 2213  PC 88 RT 2788  PC 79

RT 2947  PC 95 RT 3443  PC 88



Non-vehicle Artifacts

RT 3621  PC 60 RT 3642  PC 52

RT 3829  PC 63 RT 4766  PC 81

RT 4941  PC 86 RT 5191  PC 68



Non-vehicle Artifacts

RT 5350  PC 63 RT 5438  PC 77

RT 5602  PC 50 RT 5921  PC 50

RT 6186  PC 61 RT 6234  PC 41



Non-vehicle Artifacts

RT 6611  PC 57 RT 6799  PC 45

RT 6858  PC 67 RT 6923  PC 31

RT 7649  PC 45 RT 8454  PC 24



Non-vehicle Artifacts

RT 10769  PC 30 RT 11300  PC 17



Stimuli Used in Experiment 5

Vehicles

RT 2691  PC 79 RT 2775  PC 96

RT 2839  PC 82 RT 2885  PC 92



Vehicles

RT 3063  PC 50 RT 3066  PC 73

RT 3234  PC 90 RT 3603  PC 72

RT 3730  PC 82 RT 4139  PC 37



Vehicles

RT 4246  PC 69 RT 4360  PC 71

RT 4481  PC 35 RT 4653  PC 60

RT 4713  PC 29 RT 4731  PC 91



Vehicles

RT 5314  PC 38 RT 5377  PC 33

RT 5468  PC 50 RT 5604  PC 33

RT 5657  PC 81 RT 6005  PC 61



Vehicles

RT 6043  PC 33 RT 6102  PC 74


