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Abstract

When given a choice between two otherwise equivalent options Ð one in which the

probability information is stated and another in which it is missing Ð most people avoid

the option with missing probability information (Camerer & Weber, 1992). This robust,

frequently replicated tendency is known as the ambiguity effect. It is unclear, however,

why the ambiguity effect occurs. Experiments 1 and 2, which separated effects of the compar-

ison process from those related to missing probability information, demonstrate that the

ambiguity effect is elicited by missing probabilities rather than by comparison of options.

Experiments 3 and 4 test predictions drawn from the literature on behavioral ecology. It is

suggested that choices between two options should re¯ect three parameters: (1) the need of the

organism, (2) the mean expected outcome of each option; and (3) the variance associated with

each option's outcome. It is hypothesized that unknown probabilities are avoided because

they co-occur with high outcome variability. In Experiment 3 it was found that subjects

systematically avoid options with high outcome variability regardless of whether probabilities

are explicitly stated or not. In Experiment 4, we reversed the ambiguity effect: when parti-

cipants' need was greater than the known option's expected mean outcome, subjects preferred

the ambiguous (high variance) option. From these experiments we conclude that people do not

generally avoid ambiguous options. Instead, they take into account expected outcome,

outcome variability, and their need in order to arrive at a decision that is most likely to satisfy

this need. q 1999 Elsevier Science B.V. All rights reserved.

Keywords: Decision making; Optomal foraging theory; Ambiguity effect

Cognition 72 (1999) 269±304

COGN I T I O N

0010-0277/99/$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.

PII: S0010-0277(99)00041-4

www.elsevier.com/locate/cognit

* Corresponding author.



1. Introduction

Over the course of the last 40 years, there has been an extensive and controversial

debate in the psychological and economic literature over the quality of human

decision making in uncertain situations (Kahneman, Slovic & Tversky, 1982; Giger-

enzer, 1996; Gigerenzer & Goldstein, 1996; Kahneman & Tversky, 1996). In this

debate, one of the most prominent demonstrations of allegedly irrational decision

making has been the ambiguity effect. This occurs when people choose an option in

which the probability information is explicitly stated over one in which it is either

imprecise or lacking, even though both have the same expected utility. Consider, for

example, the famous two color problem ®rst proposed by Ellsberg (1961):

You are given the opportunity to win money in a lottery. The lottery consists

of two boxes. One box contains 50 black and 50 white balls, the other box also

contains 100 black and white balls but in an unknown composition. Suppose a

ball is randomly drawn from one box and you receive $100 if the ball is black.

Which box would you bet on? Suppose now the ball is returned to its box and

another ball is drawn at random from one of these boxes. This time you would

receive $100 if the ball is white. Which box would you bet on?

Faced with a choice task like this, most people bet on the 50/50 box in both cases.

Although this pattern of preferences is intuitively compelling, it violates one of the

fundamental axioms of rational decision making, namely the Additivity Axiom of

Subjective Expected Utility Theory (Savage, 1954).

According to this axiom, subjective probabilities assigned to white and black for a

given box must sum to 1. The probability of drawing black from the 50/50 box is 0.5:

you would not choose it for black unless you thought the probability of drawing

black from the ambiguous box were less than 0.5. If the probability of drawing black

from the ambiguous box is less than 0.5, then the probability of drawing white from

it must be greater than 0.5 (by the Additivity axiom). By the same logic, however,

preferring the 50/50 box when you want to draw white implies you believe the

probability of drawing white from the ambiguous box is less than 0.5. The prob-

ability of drawing white from the ambiguous box can't be both greater and less than

0.5. In other words, preferring the 50/50 box for both bets Ð regardless of whether

your goal is to draw black or white Ð involves a contradiction. Moreover, it

commits one to the view that the subjective probabilities assigned to the ambiguous

box for white and black are each less than 0.5, which means they sum to less than 1:

a conclusion that violates the Additivity axiom.

The fact that people typically prefer the 50/50 box for both bets has been widely

interpreted as a preference for known probabilities over unknown (ambiguous) ones.

Twenty years of research have shown this response pattern to be strong and reliable,

persisting even in the face of energetic attempts to eliminate it (MacCrimmon, 1968;

Curley, Yates & Abrams, 1986; Bowen, Qiu & Li, 1994).

Given that many decisions in our natural environment have to be made on the

basis of imprecise information about risks, the ambiguity effect is of high practical
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relevance. Moreover, given that people in real life sometimes deliberately choose

ambiguous options, it is equally interesting to discover under what circumstances

ambiguous options are preferred. A person who invests in a new technology, under-

goes an experimental medical procedure, or goes to court has, in effect, chosen the

ambiguous option. This means we need a theoretical explanation that allows us to

predict which conditions will cause ambiguity to be avoided and which will cause it

to be preferred (but see Einhorn & Hogarth, 1985 for a descriptive model of ambi-

guity avoidance and preference). Despite a long history of research, this basic

question has not yet been answered.

In fact, a review of the literature on the ambiguity effect reveals that it is not even

clear whether it is ambiguity per se that people are avoiding. There are (at least) two

distinct factors that could be eliciting the ambiguity reaction: (1) the missing prob-

ability parameter itself, or (2) motivational or attributional factors that arise when

one is asked to compare two options in a choice task. Before we can formulate an

explanation for the ambiguity effect, we must determine which factor Ð missing

probabilities or the task format Ð are eliciting it.

Therefore, this article is organized in the following way. In the ®rst section, we

present two experiments designed to test whether ambiguity avoidance is elicited

primarily by unknown probabilities or task characteristics. In the second section, we

propose and test a theoretical explanation that is based on the assumption that the

human cognitive architecture is well-designed for making decisions in uncertain

environments, and that the ambiguity effect is a byproduct of the application of

an adaptive choice strategy that not only uses information about the mean payoffs of

different options, but also about their variance and the organism's needs. Risk-

sensitive foraging theory (as the theoretical framework is called) provides a prin-

cipled basis for studying under which circumstances organisms will avoid and prefer

uncertain options (e.g. Stephens & Krebs, 1986).

In this view, the system is not designed merely to maximize expected utility. It is

designed to minimize the probability of an outcome that fails to satisfy one's need.

If, for example, one needs a certain amount of food to survive until tomorrow,

then one should be willing to take risks to avoid falling below that baseline. When

two resource patches have the same mean payoff but different payoff variance, you

ought to forage on the low variance patch, unless the payoff you need is higher than

its mean. If it is, then your best hope for surviving until tomorrow is to forage on the

high variance patch. Options with known probabilities and ambiguous options are

equivalent with respect to the expected mean payoff but they differ with respect to

the variability of possible outcomes. Given a known probability the range of possi-

ble mean payoffs and the variance is low whereas the range of possible mean payoffs

and the variance is high given an ambiguous option.

We postulate that people associate ambiguous probabilities with highly variable

outcomes. Risk-sensitive foraging theory then implies that people do not avoid

ambiguous options indiscriminately. When the outcome they need is higher than

the mean payoff of both options, they should prefer the ambiguous one because the

distribution of its possible outcomes is more variable and therefore it is more likely

to obtain an outcome above the mean payoff. Two experiments in the second section
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of this article provide evidence that people use an adaptive decision rule with the

properties just described.

2. Cognitive and motivational effects on ambiguity avoidance

Ambiguity or uncertainty avoidance has traditionally been approached from two

different perspectives: cognitive and attributional/motivational. The descriptive or

``cognitive'' approach assumes that ambiguous probability information is trans-

formed into a precise estimate (Ellsberg, 1961; Einhorn & Hogarth, 1985; Einhorn

& Hogarth, 1986; Curley & Yates, 1989) and that this precise term is used to calculate

the option's expected utility. A person thus does not compare an unambiguous to an

ambiguous option, but one with a stated probability term to one with an estimated

probability term. To explain biases in choice behavior, exponents of this approach

posit a cognitive mechanism that systematically distorts the probability estimation.

The characteristics of this distortion process will determine whether the ambiguous

option will appear more or less attractive than one of known risk that has the same ``on

paper'' expected utility. If the estimation rule is known for a particular subject,

choices can be predicted. Different models propose different estimation processes

(see Camerer & Weber, 1992 for a review). For example, the algorithm suggested by

Ellsberg is a linear combination of the expected value of the probabilities, the lowest

possible probability and a parameter of the con®dence for those estimations.

A more recent model (Einhorn & Hogarth, 1985) proposes an anchoring and

adjustment mechanism to explain ambiguity avoidance. In a state of uncertainty,

a subject ®rst assigns a value to the unknown probability parameter, which serves as

an anchor. By applying a nonlinear transformation rule to this anchor, the subject

arrives at the ®nal estimation of the probability (adjustment). This adjustment

process depends on the number of possible values of the probability that the subject

can imagine and a differential weighing of values that are above and below the

anchor. The distinctive claim of these models is that people avoid ambiguous

options because the process whereby they estimate the relevant probability para-

meter is inappropriate: it causes them to perceive the expected utility of the ambig-

uous option as lower than that of the unambiguous one.

An alternative approach holds that ambiguity avoidance emerges during the

choice task. According to this approach, people systematically avoid the more

ambiguous option because of secondary motivational or attributional factors that

arise during the comparison process. In this view, people actually compare an

unambiguous option to an ambiguous one and the missing knowledge elicits

processes that causes them to avoid the ambiguous option. For example, reasons

for choosing the unambiguous option are more ``available'', making this choice

easier to justify (Curley et al., 1986). In this view, people are reluctant to bet on

inferior knowledge, but only when this inferiority is brought to mind Ð as in a

choice task Ð does their reluctance result in ambiguity avoidance (Fox & Tversky,

1995; p. 599). A similar view holds that the unambiguous option makes us feel more

competent; therefore a possible win can be attributed to competence whereas a
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possible win with an ambiguous option would have to be attributed to chance (Heath

& Tversky, 1991). According to other motivational accounts, subjects suspect they

are facing a hostile opponent who might take advantage of their lack of knowledge,

so they favor the unambiguous option (Frisch & Baron, 1988).

Neither the cognitive nor the motivational explanations are satisfying. First, no

model has yet been con®rmed by coherent experimental data. Second, none of them

provides a conclusive theory of the ambiguity effect. Although the cognitive models

formally describe the observed behavior, they do not explain why the transformation

process should be distorted in such a systematic way. The motivational/attributional

explanations have similar shortcomings: they are post hoc and not theory-generated.

As a result, it remains unclear why (for example) it is easier to justify choosing an

unambiguous option than an ambiguous one.

Before we suggest an alternative explanation for ambiguity avoidance, we need to

determine what factors elicit it. The ®rst step is to distinguish effects of missing

probability information from effects related to the choice task.

Following the practice in the literature of distinguishing between uncertainty

(situations where probability information is lacking) and risk (situations where

probability information is known [but , 100%]), for ease of exposition we will

henceforth call the unambiguous option, with its explicitly stated risk, the ``known-

risk option''.

3. Experiment 1

In the typical experiment demonstrating the ambiguity avoidance effect, subjects

are given a choice task containing two options, one of which is ambiguous. This

method confounds the ambiguity of probability information with the choice task

format, so it cannot be used to test between the cognitive and motivational families

of explanation. The purpose of Experiment 1 is to disentangle these two factors, to

see whether ambiguity avoidance is elicited by missing probability information or

the choice task format.

If ambiguity avoidance is caused by a cognitive mechanism that systematically

distorts the estimation of an ambiguous probability term, then an ambiguous option

should be less attractive than an equivalent option of known risk even when it is

presented alone, without any other option to which it can be compared. But if it is

elicited by a comparison process, as the motivational/attributional accounts claim,

then an ambiguous option should be less attractive than the equivalent known-risk

option only when both options are presented simultaneously within a choice task.

To test these predictions, subjects were asked to rate the attractiveness of experi-

mental lotteries under three different Conditions. In Condition 1, subjects were

presented only with lotteries of known risk. In Condition 2, subjects rated only

ambiguous lotteries. In Condition 3, subjects were given a choice task and, after

the choice, were asked to rate the attractiveness of both kinds of lotteries, following

the typical procedure for ambiguity experiments (Yates & Zukowsky, 1976; Curley

et al., 1986).
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3.1. Method

3.1.1. Subjects

Fifty-one (17 per Condition) undergraduates from the University of California,

Santa Barbara participated in this experiment (mean age: 20.7 years). They received

$5 for participating, with the possibility of earning more if they were selected to play

some of the lotteries for real money (see below).

3.1.2. Materials and procedure

The task was to rate the attractiveness of experimental lotteries. Each lottery was

described as involving a box that contains a total of 100 balls. Each ball is either

black or white. In each lottery, the subject is given the opportunity to draw a ball

(without looking) from this box. If the subject draws a black ball, then that subject

wins $10. If the subject draws a white ball, he/she wins nothing. Each subject rated

®ve lotteries. The type of lottery presented (only ambiguous lotteries, only known-

risk lotteries, or both types of lotteries) was varied between subjects, while the

probability of winning a lottery was varied within subjects. The ®ve lotteries

employed ®ve levels of probability between 0.3 and 0.7 (0.3; 0.4; 0.5; 0.6; 0.7).

The experiment was administered as a paper-and-pencil test in the form of a booklet.

However, the subjects were told that, after completing the questionnaire, a few of

them would be randomly selected to actually play some of the lotteries for real

money, according to their answers in the questionnaire. This procedure was used

to ensure that subjects would think carefully about the problems.

Subjects were randomly assigned to one of the following three Conditions:

3.1.2.1. Condition 1. The ®ve lotteries were all of known risk. Each lottery

explicitly stated the probability of winning that lottery as the exact number of

black balls in the box. For instance, the subject might be told that there are

exactly 30 black balls and 70 white balls in the box.

3.1.2.2. Condition 2. The ®ve lotteries were all ambiguous. In these lotteries, the

probability of winning was described as an interval: e.g. the subject might be told

that the exact number of black balls could be any number between 0 and 60. The

center of each interval was equal to the known-risk probability for the matching

lottery in Condition 1. The interval was always ^ 30 balls.

3.1.2.3. Condition 3. There were ®ve pairs of lotteries, all presented in the form of

a choice task. In each choice task, they were asked to choose between a lottery of

known risk and an ambiguous lottery of equivalent expected utility and next they

rated both lotteries.

To measure the attractiveness of the lotteries, we used the minimum selling price

(MSP) paradigm proposed by Becker, DeGroot and Marschak (1964). The minimum

selling price is determined as follows. The subject owns a lottery. The MSP is the

smallest amount of money for which the subject will sell her right to play the lottery.

That is, if the subject gets just one cent less than this price, she would rather play the

lottery. But if she is given the MSP, then she will sell the lottery to the experimenter.
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Independently of the MSP, the experimenter determines a buying price by picking a

pokerchip from a box that contains 101 poker chips labeled from 0 cents to $10 in 10

cent increments. If the buying price is equal to or higher than the MSP, the subject

must sell the lottery in exchange for the buying price. If the buying price is lower

than the subject's MSP, then the subject does not sell the lottery, and plays it instead.

Each subject was given a questionnaire that contained ®ve lotteries and was asked

to state his or her MSP for each lottery. The order of the lotteries was determined

randomly for each subject. The subjects who received ambiguous lotteries were told

that the exact number of black balls in the box will be determined randomly within

the given interval by picking a number from a box with poker chips. In this box, each

poker chip was labeled with one of the 61 possible numbers of black balls. This box,

as well as the box that was used to determine the experimenter's buying price, was

shown to the subjects. They were told that the actual distribution for the ambiguous

lotteries and the buying prices would be determined by an independent person who

draws the relevant information by using these boxes when the lotteries are played.

The experiment was conducted in group sessions and 10 percent of those parti-

cipating in a session were selected after they ®lled out the questionnaire to play two

of their lotteries for real money.

3.1.3. Predictions

If ambiguity avoidance is caused by a cognitive distortion of probability estima-

tion, then the ambiguous lotteries should be regarded as less attractive than the

known risk ones, independent of context. In other words, the difference between

the MSP in Condition 1 (in which only known-risk lotteries were presented) and the

MSP in Condition 2 (in which only ambiguous lotteries were presented) should be

equal to the difference between the MSP between known-risk and ambiguous

lotteries in the choice task in Condition 3.

In contrast, if the comparison process inherent in choice tasks produces ambiguity

avoidance, then, as usual, the ambiguous lotteries should elicit a lower MSP than

their matching known-risk ones in the choice tasks of Condition 3. But there should

be no difference between the MSP in Conditions 1 and 2, in which lotteries were

presented without an alternative option.

3.2. Results and discussion

The minimum selling prices (MSP) stated by the subjects were analyzed in two

separate analyses of variance (ANOVAS). First, the MSPs of Condition 1 and

Condition 2 (only known-risk vs. only ambiguous lotteries) were compared in a 2 £
5 (type of lottery: ambiguous or known-risk £ level of probability) ANOVA. As the

cognitive models Ð those claiming that ambiguity avoidance is elicited by the

ambiguous probability parameter itself Ð predict, there was a signi®cant difference

between the MSP assigned to ambiguous lotteries and those assigned to known-risk

lotteries (F�1; 32� � 11:262, P , 0:05, Table 1). As shown in Fig. 1, the MSPs for

ambiguous lotteries are about $1 lower than the respective MSPs for known-risk

lotteries over the entire range of probabilities. Hence, even in the absence of contex-
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tual information Ð such as the presence of a choice task Ð the ambiguity effect

persists.

If missing probability information is the only source of the ambiguity effect, a

replication of these data is expected for Condition 3, in which subjects were given a

choice between a known-risk and an equivalent ambiguous lottery. To test this

prediction, a within-subjects comparison was performed on the MSPs assigned to

ambiguous and known-risk lotteries in Condition 3. Contrary to this prediction, the

2 £ 5 (type of lottery £ level of probability) ANOVA revealed a signi®cant inter-

action between the type of lottery and the level of probability (F�4; 64� � 2:811,

P , 0:05, see Table 1), in addition to a signi®cant main effect for the type of lottery

(F�1; 16� � 23:5). Fig. 2 shows that the difference between MSP for known-risk and

ambiguous lotteries increased when probability of winning was high (see also

Discussion section of Experiment 4 for a similar ®nding). Also, closer inspection

of Fig. 2 shows that the overall level of MSP is lower in Condition 3 than in

Conditions 1 and 2.

One can statistically examine the effect of the choice task on the MSPs by analyzing

the known-risk lotteries in Condition 1 and Condition 3 by 2 £ 5 (single versus choice

presentation £ level of probability) ANOVA. The only difference between these two

sets of lotteries is that one set was evaluated singly, whereas the other set was eval-

uated in the context of a choice task. The same analysis was performed on the MSPs

for ambiguous lotteries in Conditions 2 and 3. The purpose of this test was to see to

what degree the two types of lotteries were affected by the presentation format. Both

analyses revealed similar results: a signi®cant interaction between presentation

format and level of probability (known-risk lotteries: F�4; 128� � 2:47, P , 0:05;

ambiguous lotteries: F�4; 128� � 4:91, P , 0:01). This indicates that the choice task

affected perceived attractiveness in both types of lotteries.

To investigate the in¯uence of presentation format on the evaluations of lotteries

more thoroughly, the most appropriate statistical test would be a three-way analysis

of variance comparing type of lottery (ambiguous versus known-risk), way of

presentation (single versus with an alternative option) and level of probability.

This analysis is not possible because of the between-subjects (Condition 1 versus

Condition 2) versus within-subjects (Condition 3) comparison in the design of this

experiment. Therefore the data were transformed into difference scores that were

then used in a two-way ANOVA with the factors ``level of probability'' and ``type

of lottery''. For each subject in Condition 3 (choice task), the difference between

each minimum selling price and the mean minimum selling price of the respective

lottery presented in the single presentation conditions was computed. Assume, for

example, that Subject 1 stated a MSP of $3 for the known-risk lottery with a

probability of winning of 0.3. The mean MSP for the 0.3 probability lottery in

Condition 1 (where subjects received only known-risk lotteries) was $3.5. So the

difference score that would enter the analysis would be 2 0.5. These difference

scores (see Table 2) were analyzed in a 2 £ 5 ANOVA (factors: type of lottery, level

of probability). A signi®cant main effect for level of probability (F�4; 64� � 15:09,

P , 0:001) indicates that the magnitude of the difference scores increases the higher

the probability of success was.
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Thus, the in¯uence of the presentation mode depends on the probability of

winning: all else equal, the higher the lottery's probability of success, the worse

the choice task presentation makes it look relative to the alone presentation. Even

more interesting is a statistical trend for the factor ``type of lottery''

(F�1; 16� � 4:09, P � 0:06), suggesting that the attractiveness of known-risk

lotteries is reduced by the presence of an alternative even more than the attractive-

ness of ambiguous lotteries is.
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Fig. 1. Mean minimum selling prices for known-risk and ambiguous lotteries presented alone in Experi-

ment 1.

Fig. 2. Mean minimum selling prices for known-risk and ambiguous lotteries presented in a choice task in

Experiment 1.



Taken together, the results of Experiment 1 reveal two important features of the

ambiguity effect. First, ambiguity avoidance occurs in a non-choice situation. This

result cannot be accounted for by theories that say it is caused by comparing alter-

native options. Of course, we cannot entirely exclude the possibility that subjects in

the single presentation conditions internally generated a choice task by (for exam-

ple) systematically comparing the experimental lottery to a sure amount of money.

However, based on our postexperimental interviews with subjects, there is no

evidence whatsoever that such a strategy was applied. Furthermore, it would be

plausible to assume that if such an internal comparison were executed, the option

that the experimental lottery was compared to, namely, a sure amount of money,

would have been the same for the ambiguous and the known-risk option. Thus the

differences between these two conditions should still be attributed to the missing

probability parameter in the ambiguous condition. It can therefore be concluded that

the missing probability information rather than the contrast with a known-risk option

underlies subjects' aversion to ambiguous options (but see Fox and Tversky (1995),

who, using a slightly different procedure (buying prizes rather than selling prizes;

different contents of material, etc.) did not ®nd ambiguity avoidance for options

presented alone).

The second important ®nding of this experiment was that the effect of presenta-

tion mode is not speci®c to ambiguous options: the presence of an alternative option

reduces the attractiveness of both available options. This accords with data showing

that choices can be manipulated by adding and removing other options (Sha®r &

Tversky, 1992; Sha®r, Simonson & Tversky, 1993). So even though it does not

provide an explanation of the ambiguity effect, this is an interesting ®nding because

it implies that values and desirability of options are not stable attributes, but ¯exible

qualities or properties that are established in a given situation.

4. Experiment 2

Experiment 2 was designed primarily to replicate the ®ndings of Experiment 1.

However, a small but important change was introduced in this study. The choice task

in Condition 3 of Experiment 1 was replaced by a chance process: a coin toss
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Table 2

Mean difference scores in Experiment 1 (standard deviations in parentheses)

Probability of winning Mean difference

scores for known-

risk lotteries

Mean difference

scores for

ambiguous lotteries

0.3 20.11 (1.25) 0.55 (1.49)

0.4 20.54 (1.26) 20.06 (1.60)

0.5 20.14 (0.97) 20.02 (1.26)

0.6 20.70 (1.21) 20.47 (1.78)

0.7 21.50 (1.36) 21.2 (1.70)



determined which of the two options would be played. Thus subjects in this condi-

tion received and evaluated both an ambiguous and a known-risk lottery, but they

did not choose which one they would like to play. This experiment allows us to

investigate whether the presentation effect found in Experiment 1 is due to the

choice process or whether it is produced by the mere presence of two options

with different amounts of information. This manipulation will reveal more about

the nature of the presentation effect, allowing us to evaluate models that explain

ambiguity aversion by either (a) a reluctance to bet on ambiguous prospects because

they are dif®cult to justify (Curley & Yates, 1986) or (b) a general unwillingness to

act on inferior knowledge (Fox & Tversky, 1995). According to these models, when

an ``active choice'' is eliminated from the task, the presentation effect should be

reduced.

4.1. Method

4.1.1. Subjects

Sixty undergraduate students from the University of California, Santa Barbara (20

per condition) with a mean age of 19.95 years participated in this experiment. They

received $5 for participating, but this amount could be increased by winning the

experimental lotteries. As in Experiment 1, the procedure was administered as a

questionnaire, but 10% of the subjects were randomly selected to actually play some

of the lotteries for real money.

4.1.2. Materials and procedure

Stimuli and procedure were the same as in Experiment 1 for those subjects who

received only known-risk (Condition 1) or only ambiguous lotteries (Condition 2).

In Condition 3, however, subjects received an ambiguous and known-risk lottery

without the choice instruction. They indicated their minimum selling prices for both

lotteries. The order of pricing of the two lotteries was counterbalanced. Then the

experimenter's buying price was determined as in Experiment 1.

Finally, a coin was tossed to determine which of the two lotteries would be

played.

4.1.3. Predictions

If the presentation effect in Experiment 1 is caused by the simultaneous presenta-

tion of two options, then all the results of Experiment 1 should be replicated in

Experiment 2. In contrast, if making a choice produces the presentation effect, then

this effect should be eliminated in the present experiment: MSPs in Condition 3

should not be consistently lower than in their matching alone conditions.

4.2. Results and discussion

The statistical analysis paralleled that for Experiment 1. First, the minimum sell-

ing prices of Condition 1 (known-risk lotteries only) and Condition 2 (ambiguous

lotteries only) were compared in a 2 £ 5 (type of lottery £ level of probability)

ANOVA. Then a within-subjects comparison on the minimum selling prices of
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Condition 3 (simultaneous presentation of known-risk and ambiguous lotteries) was

performed (see Table 3). As Fig. 3 shows, the pattern of results almost exactly

replicated that in Experiment 1. In the analysis of Conditions 1 and 2, there was a

main effect for the type of lottery (F�1; 32� � 21:99, P , 0:001) and no signi®cant

interaction (F�4; 152� � 0:9, P . 0:05). This indicates that minimum selling prices

were lower for ambiguous lotteries than for the corresponding known-risk lotteries

over the entire range of probabilities. This provides another demonstration that

ambiguity aversion can occur in the absence of a known-risk option.

The results of the choice task Condition 3 of Experiment 1 was also replicated in

Condition 3 of the present experiment (see Fig. 4). As in Experiment 1, minimum

selling prices for ambiguous lotteries were lower than those for known-risk lotteries

(F�1; 19� � 25:625, P , 0:001), and they interacted with the level of probability

(F�4; 76� � 4:921, P � 0:001).

Closer analysis of the data revealed that there was a depressing effect of simulta-

neously presenting an alternative option for the known-risk lotteries (known-risk

lotteries, Condition 1 versus known-risk lotteries Condition 3: F�1; 38� � 6:08,

P , 0:05). The equivalent analysis for the ambiguous lotteries (ambiguous lotteries

Condition 2 versus ambiguous lotteries Condition 3) failed to reach signi®cance.

To determine the effect of presentation mode on minimum selling prices, we

again examined difference scores (Table 4) between each minimum selling price

in Condition 3 and the mean minimum selling price of the matching lottery

presented alone (see Results section for Experiment 1). This analysis revealed a

signi®cant effect of type of lottery (F�1; 19� � 9:86, P , 0:01), where the attrac-

tiveness of known-risk lotteries was reduced by the simultaneous presentation

condition more than the attractiveness of ambiguous lotteries was. Moreover,

there was a signi®cant interaction between type of lottery and level of probability

(F�4; 76� � 3:69, P , 0:01). This interaction indicated that with increasing prob-

abilities presenting another option at the same time decreased the attractiveness of

known-risk lotteries more than the attractiveness of ambiguous lotteries.

Although it seems that eliminating the choice from the comparison process

slightly changes the responses (e.g. ambiguous options are less affected by the

simultaneous presentation than known-risk options) the overall pattern is preserved.

Ambiguity avoidance was observed in single presentation and in simultaneous

presentation conditions. Therefore it can be concluded that comparison processes
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Table 3

Mean minimum selling prices in Experiment 2 (standard deviations in parentheses)

Probability of

winning

Known-risk single

presentation

Ambiguous single

presentation

Known-risk

simultaneous

presentation

Ambiguous

simultaneous

presentation

0.3 4.47 (1.85) 3.21 (1.22) 3.44 (1.42) 3.04 (1.53)

0.4 5.10 (1.18) 3.85 (1.43) 4.05 (1.51) 3.36 (1.58)

0.5 6.47 (2.01) 4.42 (1.37) 5.21 (1.65) 4.36 (1.31)

0.6 6.83 (1.35) 4.98 (1.33) 6.03 (1.48) 4.85 (1.37)

0.7 7.90 (1.29) 6.13 (1.59) 7.07 (1.61) 5.16 (1.49)



cannot be its main causal factor. However, the effects different ways of presenting

more than one option have on the evaluation of options might be worth studying.

5. Discussion for Experiments 1 and 2

Experiment 2 replicated the main ®nding of Experiment 1: even in the absence of
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Fig. 3. Mean minimum selling prices for known-risk and ambiguous lotteries presented alone in Experi-

ment 2.

Fig. 4. Mean minimum selling prices for known-risk and ambiguous lotteries presented simultaneously in

Experiment 2.



an alternative option, lotteries with missing probability information are considered

less desirable. Furthermore, presentation of two options Ð whether the subject must

choose between them or not Ð reduces the attractiveness of each, relative to situa-

tions in which each option is presented singly. This undercuts motivational accounts

of the ambiguity effect: these predict that comparison processes reduce the attrac-

tiveness of ambiguous options, not of known-risk ones. Indeed, if anything, known-

risk options suffered more than ambiguous ones from the simultaneous presence of

an alternative with which they could be compared. In addition, Experiment 2

showed that the attractiveness of at least known-risk options is affected by the

presentation of an alternative even in the absence of an active choice task. Taken

together these results provide strong evidence against explanations of ambiguity

avoidance that focus on the comparison process inherent in choice tasks, such as

those proposed by Curley et al., (1986); Fox and Tversky (1995).

Further evidence that people assume that missing probability information

portends a bad outcome comes from Rode (1996). Her procedure provides further

evidence for a ``pure'' ambiguity effect: one unadulterated by the process of assign-

ing an MSP, by the presence of a known-risk alternative, or by any suspicions that

the lottery is rigged that might arise from the fact the experimenter usually decides

whether black or white is the winning color1. In this experiment, Rode presented

subjects with the same type of ambiguous lotteries as were used in Experiments 1

and 2: the only difference was that the subjects themselves determined the color of

the winning ball. This was to minimize the possibility that subjects would think the

lotteries were rigged against them. (Curley et al. (1986) describe in detail the

procedure used to compose ambiguous lotteries for which the winning color is

determined by the subject.) After choosing black (or white) as the winning color,

subjects were asked questions to reveal how many black (or white) balls they believe

the box most likely contains. The results clearly revealed that although subjects

decided which color would count as a win, they were consistently (across subjects

and lotteries) more con®dent that the actual number of winning balls would fall
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Table 4

Mean difference scores in Experiment 2 (standard deviations in parentheses)

Probability of winning Mean difference

scores for known-

risk lotteries

Mean difference

scores for

ambiguous lotteries

0.3 2 1.02 (1.45) 2 0.16 (1.57)

0.4 2 1.05 (1.55) 2 0.48 (1.62)

0.5 2 1.26 (1.69) 2 0.67 (1.34)

0.6 2 0.77 (1.55) 2 0.12 (1.40)

0.7 2 0.82 (1.65) 2 0.98 (1.53)

1 But note that subjects in our experiments were carefully instructed that the content of ambiguous

boxes was determined randomly and independently of the experimenter from a uniform probability

distribution.



below the expected mean number of winning balls than above it. Moreover, note that

they had no other option to which these ambiguous lotteries could be compared.

Thus, this study further con®rmed the hypothesis that missing probability informa-

tion rather than comparison processes is responsible for the ambiguity effect.

5.1. Why do people react to missing probability information?

Based on Experiments 1 and 2, we conclude that the ambiguity effect is primarily

caused by aversion to the unknown probability parameter. So the crucial question at

this point is: Why does missing or imprecise probability information evoke such a

reaction? In the following section we argue that ambiguous probability information

elicits this behavior because, all else equal, people associate it with high outcome

variance.

When asked to judge the probability of a single event, people trying to solve a

simple Bayesian inference problem usually give the wrong answer (Kahneman et al.,

1982). But when the same problem asks them to compute a frequency instead, most

people answer correctly (Gigerenzer, 1991; Gigerenzer & Hoffrage, 1995; Cosmides

& Tooby, 1996a). In a recent series of articles Gigerenzer, as well as Tooby and

Cosmides (Gigerenzer, 1991; Gigerenzer, 1994; Cosmides & Tooby, 1996a; Brase,

Cosmides & Tooby, 1999; Tooby & Cosmides, 1999) have argued that this is

because the human mind contains decision making mechanisms that require the

presentation of event frequencies to operate properly. In this spirit, it is instructive

to consider an ambiguity problem that has been rephrased in a frequency format:

You are given the opportunity to win money in a lottery. The lottery consists

of two boxes. One box contains 50 black and 50 white balls; the other box also

contains 100 black and white balls but in an unknown composition. To play

this lottery, you randomly draw a ball from one of these two boxes: you choose

which box to draw from. If the ball is black, you will receive $10; if it is white,

you will receive nothing. Imagine you are given the opportunity to draw many

times with replacement from one of these boxes.

If you draw from the 50/50 box repeatedly with replacement, let us say 100

times, it is likely that you will end up with an amount around the expected

mean payoff of $500. But if you draw from the ambiguous box, there may be

100 black balls, in which case your expected mean outcome will be $1000,

there may be no blackball, in which case you will win nothing, or the number

of black balls may fall anywhere in between, in which case your expected

mean payoff will be somewhere between $0 and $1000.

This example shows that one can make good estimates of the expected outcome

given precise knowledge of the probability of the event. However, if one lacks

knowledge of the probability one cannot make good predictions about the mean

outcome. The outcome depends on the (unknown) distribution of balls in the box and

varies accordingly. In other words, lacking probability information implies lacking

the opportunity to predict your outcome. The estimated outcome thus has a larger
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range and accordingly larger variance than the option with a known probability2. Yet

outcome information Ð or, in other words, the consequences of behavior Ð is a

very important variable not only for humans but also for other animals.

Animal studies on foraging strategies have repeatedly demonstrated that avoid-

ance of high variance outcomes is a predominant behavior. Just as in a psychological

decision making experiment, foraging for food in the wilderness often requires a

choice between two or more options that are not completely predictable in terms of

their consequences. However, in contrast to experiments in the laboratory, the

quality of the animals' decision strategy in the natural world determines its survival

(Sinn & Weichenrieder, 1993). Empirical studies of animal choice have demon-

strated (Boneau & Cole, 1967) that under certain conditions, animals consider the

mean and the variance of calories of available food options. If its mean calorie

payoff is above the current need, they choose the option with the lower variance

and they select higher variance options if their need is above the mean outcome

(Caraco, 1981). Using this decision rule maximizes the probability of survival.

We propose that people attend to the fact that unknown probability parameters

indicate that the expected payoff is highly variable, which implies that they have

only uncertain predictions for the next possible outcome. Imagine you have to decide

where to go in order to ®nd food for tomorrow. Assume further you have to get at

least 500 calories every day in order to survive. Even if Ð in the long run Ð all

available options would provide you a mean calorie payoff of 600, a highly variable

option would more often reveal outcomes of less than 500 calories. Therefore, in

order to make it through the next day, you are better off choosing the low variability

option, which will more likely provide you with the necessary amount of calories3. It

should be noted however, that the step-function implied here is not the only possible

one. The essential point is a non-linear relationship between the external currency

like calorie, and some internal currency like utility or ®tness. Creating a step func-
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2 To estimate the variability of outcomes one ®rst has to calculate the probability of getting each of the

10 possible numbers of black balls (0 to 10) given 10 draws with replacement for the given probability

distribution in the box. Given these probabilities one can determine the expected outcome E � S�pi p i�,
where pi is the probability of getting i black balls in 10 draws with replacement provided a given

distribution in the box. The variance of the distribution of the possible outcomes (provided the 10

draws) is the average square distance between the actual outcome and the expected outcome weighted

by its probability.

s2 �
X10

i�0

pi i 2 E� �2 �1�

In case of an ambiguous box, the procedure is slightly more complicated because the probabilities of

obtaining a particular number of black balls would have to be calculated for each possible distribution in

the ambiguous box (see footnote to Table 5). From these probabilities the overall probability of getting a

particular number of black balls given 10 draws with replacement would be calculated by summing over

the 101 possible distributions and dividing this value by 101. Then the expected outcomes and variance

can be computed given these overall probabilities according to the formulas presented above.
3 Please note that we are concerned with options having the same mean payoff but different outcome

variability. Of course, in the natural environment people (and animals) have to deal with options differing

with respect outcome variance and mean payoff. In this case the predictions of optimal foraging become

more complex.



tion is just one form of this general situation, and death is just one obvious example

of this.

Thus we think that people avoid the ambiguous lottery in ambiguity experiments

without a speci®ed need because they wish to avoid the highly variable distribution

of outcomes. We assume that this adaptive rule is over generalized to single-draw

ambiguity experiments4.

If this interpretation is true, then what people prefer in most ambiguity experi-

ments is not the known probability per se, but the predictability of the mean outcome

(or at least the knowledge that the range of possible outcomes will be comparatively

small). In Experiments 3 and 4 we test several hypotheses which follow from this

view.

6. Experiment 3

To test the hypothesis that it is high outcome variance rather than unknown

probability information that is avoided, we designed the following experiment in

which subjects choose between a known-risk option with high outcome variance and

an ambiguous option with low outcome variance. The problems had a frequency

format: each lottery allows one to draw 10 balls, rather than just one.

6.1. Method

6.1.1. Subjects

Thirty-four (mean age 18.5; 23 female and 11 male) students at a Gymnasium

(high-school) in Potsdam, Germany, served as subjects in this experiment. In a

questionnaire, they received a number of decision tasks involving urns and balls.

They indicated their answers by circling their preferred option. They knew,

however, that 10% of the subjects would be randomly selected to play some of

the lotteries presented in the questionnaire for real money.

6.1.2. Materials and procedure

Along with some unrelated questions, the subjects were asked to choose or

express indifference between two options that differed with respect to knowledge

about probabilities and outcome variability in the following way: one option had a

known-risk of 0.5 to win but high outcome variance, whereas the other option was

ambiguous but had lower outcome variance. The order of presentation of the two
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4 In the typical ambiguity experiment with one draw of one ball options do not differ with respect to

outcome variability. Our point is that people use missing probability information as a cue for high

outcome variance. And this cue is used in the single-draw situation as well. There are many examples

of adaptive strategies that are generalized to situations to which the strategy does not actually apply.

Probability matching, for instance, is a good strategy if an animal competes with conspeci®cs for

resources. However, in the absence of competing conspeci®cs the probability matching rule is suboptimal

yet shown by the animal. Any strategy is only optimal in certain environments; however, one cannot have

as many optimal strategies as there are environments. As a consequence, most strategies that are func-

tional in certain environments can be shown to be used in suboptimal environments as well.



options was counterbalanced. The speci®c wording of the problem was (translated

from German):

Imagine the following situation: you are given the opportunity to choose

between the following two options: Option 1 offers you two boxes. One box

contains 100 black balls, one box contains 100 white balls. You are allowed to

pick 10 balls with replacement from one of these boxes. For each black ball

that you draw you will receive DM 10. Option 2 offers you one box that

contains 100 black and white balls in an unknown composition. The exact

number of black and white balls in this box will be determined randomly from

all 101 possible distributions. You are allowed to pick ten balls with replace-

ment from this box. [After each draw a new composition of black and white

balls will be determined at random by picking one of the 101 possible distri-

butions]. For each black ball that you draw you will get DM 10.

In this scenario, the ambiguous option has lower outcome variability than the

known-risk option has (see footnote 2). We are aware that the wording of Option 1 is

somewhat odd because the participant will know her payoff after the ®rst draw as

soon as she realizes from which box she picked. However, for methodological

reasons we kept the wording of the options as similar as possible.

To make sure that the ®ndings are not caused by a perceived difference in the

range of the possible outcomes or the fact that the content of the ambiguous box is

changed after each draw, the same subjects also received a version of the problem in

which the ambiguous box remains the same throughout the ten draws [the sentence

in parentheses was eliminated]. This change increased the variance of Option 2, but

it was still lower than in Option 1. The order of the problems, along with several

other unrelated decision tasks, was determined randomly. In a control condition, 20

subjects from the same population (high school students in Potsdam, Germany)

chose between a known-risk and an ambiguous option, both of which had a

frequency format:

Imagine the following situation: you are given the opportunity to choose

between the following two options: Option 1 offers a box that contains 50

black and 50 white balls. You are allowed to pick 10 balls with replacement

from this box. For each black ball that you draw you will receive DM 10.

Option 2 offers you one box that contains 100 black and white balls in an

unknown composition. The exact number of black and white balls in this box

will be determined randomly from all 101 possible distributions. You are

allowed to pick 10 balls with replacement from this box. For each black

ball you will get DM 10.

6.1.3. Predictions

We predict that subjects do not avoid unknown probability information per se:

they avoid ambiguous problems only when the ambiguity is interpreted as indicating
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high outcome variability. If this is correct, then in Experiment 3, they should avoid

the high outcome variability option even though it is of known-risk, and prefer the

low outcome variability option, even though it is ambiguous.

6.2. Results and discussion

The choice pattern for these two problems was clear-cut. Consistently the major-

ity of subjects chose the option with lower outcome variability even though it lacked

probability information. In the version of the problem in which the ambiguous box

remained the same throughout the ten draws, 67.6% (23 subjects) chose the ambig-

uous box, 26.4% (9 subjects) chose the known-risk box and only 5% (2 subjects)

were indifferent (x2 � 4:23, P , 0:05). In the version in which the ambiguous box

was replaced by a new, randomly determined box after each draw, the result was

even more pronounced. Seventy-three percent (25 subjects) chose the ambiguous

box, 23% (8 subjects) selected the known-risk box and only 1 subject was indifferent

(x2 � 7:53, P , 0:05). This result cannot be accounted for by positing that these

particular subjects have a general preference for ambiguity because in the control

condition 70% of them (14 subjects) chose the known-risk option, 20% (4 subjects)

chose the ambiguous option and 10% (2 subjects) were indifferent (x2 � 3:2,

P , 0:10). This control condition further shows that frequency versions of an ambi-

guity problem elicit the same pattern of results as single event versions do.

In choosing between known-risk and ambiguous lotteries, subjects in Experiment

3 treated outcome variability as an important variable. They preferred low variance

in outcomes, even when it meant choosing an ambiguous option.

An evolutionary-functional analysis, which is based on a task analysis of an

ancestral problem and aimed to discover and understand adaptations, expected

this choice pattern, on the grounds that a well-engineered system for making deci-

sions under uncertainty should be sensitive to the variance of probability distribu-

tions.

However, choosing the lower variance option when faced with the prospect of a

gain, as subjects did in this experiment, is also consistent with the cumulative

prospect theory of Tversky and Kahneman (1992). Cumulative Prospect theory is

an algebraic model of decision making in which the consequences of alternatives are

judged relative to a reference point. A value function attaches a subjective worth to

each outcome. The value function is s-shaped and concave in the winning section

and steeper and convex in the losing section. Given the appropriate choice of para-

meters, this model also allows for preference of the lower variance option. The

explanation, however, would be different from an evolutionary-functional one.

According to an evolutionary-functional approach, subjects were risk averse

because human decision-making systems are sensitive to probability distributions:

i.e. the system is designed to embody certain rational principles. But according to

prospect theory, subjects were just risk averse because (1) there was an opportunity

for gain, and (2) they have a concave utility function in the domain of gains.

Experiment 4 was designed to see whether the decision-making system has

further design features suggested by the evolutionary-functional approach. In parti-

C. Rode et al. / Cognition 72 (1999) 269±304288



cular, we wanted to see whether the system is designed to switch from being risk

averse to risk taking, depending on the individual's level of need.

To accomplish these goals, the lotteries in Experiment 4 had two stages, which

allowed us to create a situation in which the subject's choice of a probability

distribution (made in stage 1) was not related to the size of the reward (won by a

separate lottery in stage 2). In fact, the amount of money to be won was held constant

across conditions. The lotteries also introduced a need variable, creating a baseline

that subjects would have to exceed in stage 1 in order to be in a position to win

money in stage 2. By doing so, we were able to create situations in which the same

gain and probability distribution should elicit different levels of risk-taking, depend-

ing on the subjects' need. Such a result is suggested by an evolutionary-functional

approach.

7. Experiment 4

7.1. Decision making in uncertain environments

The results of Experiment 3 indicate that people Ð like other animals Ð attend to

a variable that is highly relevant from the perspective of adaptive choice behavior:

outcome variance. But do they take other relevant variables into account? We

assume that cognitive structures and problem solving systems in humans and

other animals evolved to deal with the daily tasks of surviving and reproducing.

To arrive at a decision that maximizes the probability of survival (or, more gener-

ally, the probability of getting what one wants), an animal's decision-making system

should be designed to take into account its current state as well Ð more speci®cally,

its desires and goals or needs in a particular situation. The cognitive architecture of a

number of foraging animals is designed to do so (Caraco, 1981; Stephens & Krebs,

1986). What about the cognitive architecture of humans?

Three parameters are relevant for maximizing the probability of getting what you

want: (1) your personal goal or need in a given situation, (2) the mean outcome of

the available options, and (3) the variability of the mean outcome of the options. In

situations where one must choose between options that have the same expected

utility, the decision rule that follows from this is to choose the lower variance as

long as the mean outcome of this option satis®es the need. Otherwise, switching to

the higher variance option is the best rule. Although Experiment 3 shows that

ambiguity and variance can be experimentally dissociated, in the typical ambiguity

experiment the ambiguous lottery might be perceived as having higher variance than

the known-risk lottery. Hence, one would expect subjects following this decision

rule to choose the known-risk lottery unless they require a payoff that exceeds the

lottery's expected utility.

The following experiment was designed to test the hypothesis that people have

decision rules designed to satisfy a need (or achieve a certain goal) by considering

the means and the variances of the available options and then choosing the option

most likely to satisfy their need. In this study, subjects were given a series of
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problems in which they were asked to choose between two boxes. Each problem

speci®ed the exact number of black and white balls in one of the two boxes, but left

the distribution of black and white balls in the other box unknown. In addition to this

information, the subject was told that he or she needs a certain number of black balls

to proceed to a second stage of the lottery. To attempt to get the required number of

blackballs, the subject is allowed to draw ten times with replacement from one of the

boxes, and therefore has to decide which of the two boxes is more likely to provide

him or her with the required number of black balls.

7.2. Method

7.2.1. Subjects

Thirty-one undergraduates (mean age 18.7 years) at the University of California,

Santa Barbara served as subjects in this experiment. Each subject was paid $5 for

participation but could increase this amount by winning the experimental lotteries.

7.2.2. Material and procedure

Subjects were tested in small groups of up to ®ve people.

All lotteries were presented in a questionnaire, but subjects were informed that

after the completion of the questionnaire some of them would be randomly selected

to play some of the lotteries, based on the preferences they expressed in their

questionnaire.

To test the hypotheses, we conducted a within-subjects experiment that involved a

two-stage lottery. The instruction part of the questionnaire familiarized the subjects

with the following general procedure: There are two boxes (box A and box B), each

®lled with 100 black and white balls. Box A contains a speci®ed number of black

and white balls, whereas the composition of box B remains unknown. However, the

subject is informed that the actual distribution in box B will be determined randomly

by picking one of 101 poker chips that are labeled with each possible distribution.

Thus, the expected value of Box B was always 0.5. The subject's task is to pick a

certain number of black balls from one of the two boxes. To do that, the subject

(blindly) draws 10 times consecutively from one box, replacing the picked ball after

each draw. If she draws the required number (or more) of blackballs, she proceeds to

the second stage of the lottery.

In stage 2, a third box, ®lled with 50 black and 50 white balls, is presented and the

subject is required to pick a black ball. If she is successful, she will win $20. If the

subject does not get the necessary number of black balls in the ®rst stage, she will not

proceed to the second stage of the experiment and therefore will not win any money.

This third box was used so there would be no connection between the gain and the

actual distribution of black balls in the ®rst and critical part of the experiment.

While the participants were working through the questionnaire they could see the

three boxes to be used to actually play some of the lotteries. The entire procedure

was explained twice: once by the experimenter who demonstrated with the boxes

how the content of the boxes would be determined and once in the questionnaire.

Any participants' questions about the procedure were answered.
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The effects of two independent variables on choices under uncertainty were

investigated in this study: ``need'' and ``level of probability of winning''. To oper-

ationalize and manipulate the need of the subject in this experiment, for each lottery

the number of black balls that have to be drawn in ten draws with replacement is

speci®ed. The number of required balls could either match the expected value (EV)

of box A or be above or below this EV by one or two balls. This independent

variable Ð ``need'' Ð was tested on four different probability distributions of

black to white balls in box A: 30:70, 50:50, 60:40 or 70:30. For example, for the

probability distribution 30:70 black to white balls in box A, the number of black

balls required to move to stage 2 was either (a) at least one black ball (two balls

below the expected value), (b) at least two black balls (one below the expected

value), (c) at least three black balls (exactly the expected value), (d) at least four

black balls (one above the expected value), or (e) at least ®ve black balls (two above

the expected value). In this way, ®ve levels of need were constructed for each of the

four probability levels. This resulted in a ®nal questionnaire of 20 decision situa-

tions, which were presented to each subject in a new random order. The subject had

to indicate which of the two boxes she would prefer for the ten draws for each

situation separately. Subjects were required to choose one of the two boxes: neither

indifference nor moving back and forth in the questionnaire were allowed. In this

experiment, the order of box A and B was not counterbalanced because (a) our pilot

studies never revealed any order effects and (b) using different orders caused confu-

sion and many inconsistent answers.

After the subjects completed the questionnaire, some were randomly selected to

play some of the lotteries according to their answers. If the subject drew the required

number of black balls in the played lottery, and also drew a black ball in the second

stage of the lottery, she was paid $20.

7.2.3. Predictions

Based on optimal foraging theory, we predict that people will consider the mean

outcomes and the distributions of the two boxes and select the one that is most likely

to deliver the required number of balls. Speci®cally, the hypotheses and predictions

are:

1. People choose on the basis of subjective needs. If their need in a particular

situation is lower than the mean outcome of the known-risk box, subjects will

choose the known-risk box. If their need is higher than the mean outcome of the

known-risk box, the ambiguous box will be chosen.

2. The pattern of preferences will not depend on the probability of the known-risk

option. Even if the probability of success in the known-risk box is very high,

subjects will choose the ambiguous box if it is more likely to satisfy their need.

7.3. Results and discussion

The dependent variable was the choice of either the known-risk option (box A) or

the unknown option (box B) for each person and each decision situation. Fig. 5
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shows the relative frequencies of ambiguity-avoiding choices (preference for box A)

given a need above or below the expected outcome of the known-risk box.

Subjects' choices followed a very consistent pattern. As predicted, their need in a

given situation had a strong effect on their preference for a known-risk versus an

ambiguous option. If the required number of balls was less than the expected value

of the known-risk option, most subjects selected the known risk. But if the required

number of balls exceeded the expected mean outcome, most subjects switched to the

ambiguous option. In other words, we both predicted in advance, and found, a

condition in which people systematically prefer the ambiguous option. This should

not be possible on existing cognitive or motivational theories of the ambiguity

effect.

In addition to this predicted effect, the data seem to indicate an effect of the level

of probability of the known-risk option. Subjects appear more reluctant to choose the

ambiguous option if the probability of winning with the known-risk option is high.

To test these effects statistically, a score was constructed to indicate the strength

of ambiguity aversion. For each person and each decision, the choice of box A was

coded with 1 and the choice of box B was coded with 0. Thus the more a person

avoided ambiguity, the higher that person's score. Next, the data for each person

were averaged over the four probability levels, resulting in one data point per need

condition for each person. These scores were analyzed by a within-subjects-

ANOVA with need as the repeated variable. As expected, the effect of need was

highly signi®cant (F�4; 120� � 40:65, P , 0:001). A similar procedure was applied

to investigate the effect of the probability level of the known-risk option. Here, the

scores were averaged over the different conditions of need, resulting in one data

point per probability level for each subject. Again, a within-subjects ANOVA with

probability level as repeated variable showed a signi®cant effect (F�3; 90� � 34:20,

P , 0:001), indicating that ambiguity avoidance increased with probability of the

known-risk option. This increase in ambiguity avoiding choices may not be a

``bias''. Instead, it may re¯ect the actual differences in probabilities of winning

with one or the other option. If so, then this would indicate the operation of an

exceptionally well-designed system for making decisions under uncertainty, one

that satis®es various principles of rationality. The crucial criterion of rationality

in this context is whether the subjects' choice pattern re¯ects differences in the

actual probabilities of satisfying their needs, given the two different boxes. To

investigate this question, the actual probabilities of getting the required number of

balls with each of the two boxes were calculated for the 20 conditions (Table 5, third

and fourth columns). The actual probabilities in column 3 were generated as follows:

For the given binomial distribution in the known-risk box, the cumulative probabil-

ities from drawing the least number of black balls to drawing 10 black balls were

computed. In case of the ambiguous box, basically the same procedure was used, but

the probability of getting at least the required number of black balls is calculated for

each of the 101 possible distribution of black and white balls in the box. These

probabilities are summed up and divided by 101 to get the expected probability of

getting at least the required number of black balls by drawing from the ambiguous

box (see footnote to Table 5 for formula).
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From these probabilities one can infer which option had the higher probability of

winning and therefore should have been selected in each decision problem. As a

measure of the relative probability of winning, the difference between the probabil-

ity of winning with box A and box B was obtained (Table 5, ®fth column). These

differences were then used in a regression analysis to predict the choice of the

subjects. To make an overall ambiguity effect visible, the relative frequencies of

ambiguity aversion decisions minus 50% were used as the criterion (this is because

50% would indicate indifference between the two options). Thus, a positive value

indicates an aversion to ambiguity and a negative value indicates a preference for

ambiguity (Table 5, last two columns).

From Fig. 6 it is clear that people consider actual differences in the probabilities of

ambiguous and known-risk options (r2 � 0:91; b � 1:207; t�18� � 13:48; P , 0:01).

In other words, subjects in this experiment were behaving in an exceptionally rational

manner. Somehow their answers were re¯ecting true probabil-ities, even though

using mathematics to calculate these out is rather complex. We are not, of course,

suggesting that our subjects were performing these calculations in any conscious or

deliberate manner; rather, that their decision systems are designed to produce the

same answers that one would were one to do the calculations.

So people are willing to select an ambiguous option if this option is more likely to

satisfy their current need. However, as indicated by a signi®cant intercept (a � 0:08;

P , 0:01), there is still a minor, residual ambiguity aversion effect. More speci®-

C. Rode et al. / Cognition 72 (1999) 269±304 293
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cally, if the actual difference between the probability of winning with an ambiguous

box versus a known-risk box were zero, people would prefer the known-risk option

instead of being indifferent.

At this point we can only speculate about the origins of this residual ambiguity

effect. One possibility is that people do not believe there is a symmetrical distribu-

tion of probabilities in the unknown box. There is evidence in support of this

interpretation. In two studies, Rode (1996) asked subjects to rate the likelihood of

each possible probability distribution in the unknown box. Very consistently,

subjects assigned a left-skewed probability distribution to the unknown box, and

this pattern did not change when subjects themselves determined the color of the

winning balls (see Discussion section for Experiments 1 and 2). These results,

however, do not tell us whether this belief in a skewed distribution is caused by

the arti®cial tasks and stimuli used in these experiments or whether it re¯ects another

interesting feature of the decision making mechanism.

According to risk-sensitive foraging theory, organisms are not irrationally risk

averse, nor are they irrationally risk seeking. Instead, the organism's choice is

rationally related to its level of need. Given two resource pools with the same

expected utility but different outcome variance, organisms will choose to forage

in the low variance pool when their need is less than or equal to the expected utility.

They will choose to forage in the high variance pool when their need is greater than

the expected utility. That is how human subjects behaved in Experiment 4. Taken

together, the results of Experiment 4 indicate that people apply a decision rule that

takes into account the three parameters speci®ed by risk-sensitive foraging theory:
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Fig. 6. Decision tendency as a function of the actual probability of winning.



the organism's need, the mean payoff of the options, and their variance. The impor-

tance of the need factor becomes clearer when one considers the following:

1. Subjects did not avoid ambiguity in an indiscriminate manner. If they had had a

general aversion to ambiguity, they would have chosen the known-risk box

independently of their need. They did not.

2. The expected value of the boxes was not the only variable upon which subjects

based their decisions. If it had been, they would have chosen the known-risk box

in the 0.6 and 0.7 conditions and the ambiguous box (which has an expected value

of 0.5 in the 0.3 condition) whether the number of black balls they needed was

above or below the expected value. Instead, for each probability level, their box

choice was determined by the relationship between the expected value and their

need level.

3. Subjects did not avoid high outcome variability in an indiscriminate manner. If

they had had a general aversion to high variance, they would have selected the

known-risk box in all experimental conditions. They did not. When need dictated,

they preferred the high variance box to the known-risk box.

The pattern of results obtained in this experiment deviates from all of these

hypothetical alternative explanations. Moreover, there is a close ®t between

subjects' responses and those one would expect if they had combined information

about means, variance, and need in a way that satis®es the strictures of risk-sensitive

foraging theory. Thus, we conclude that the subjects took into account all three

factors in a way that maximizes the probability of ful®lling their needs.

8. General discussion

Three families of theories have been put forth to explain why people avoid options

with missing or imprecise probability information Ð the so-called ambiguity effect.

Experiments 1 and 2 were designed to test between the cognitive and motivational

accounts by seeing which factor elicited ambiguity avoidance: missing probability

information or the comparison process inherent in the choice task format. The results

showed that missing probability information is the decisive factor.

Inspired by optimal foraging theory, we proposed that people are not avoiding

ambiguity per se: instead, they are avoiding the high variance of outcomes of

ambiguous options. We provided evidence for this claim in Experiment 3. By

using a frequency format, we were able to create a problem in which the variance

of the ambiguous option was low, and the variance of the known-risk option was

high. The results were clear: people preferred the low variance option, even though it

was ambiguous.

Experiment 4 tested hypotheses drawn from the branch of optimal foraging

theory dealing with risk-sensitive foraging. The results revealed that people

integrate three parameters, their current need, the mean outcome and the variance

of this mean outcome, generating a decision that maximizes the probability of

getting what they need. They chose high variance options when they needed more
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than the mean payoff of the resource pools, and low variance options when they

needed less.

The results of Experiments 1±4 converge in demonstrating that humans apply a

functionally adaptive decision rule when making decisions under uncertainty. For

this empirical argument we drew on the assumption that the human mind is designed

to solve adaptive problems well (Cosmides, 1989; Cosmides & Tooby, 1989;

Cosmides & Tooby, 1994; Tooby & Cosmides, 1992; Tooby & Cosmides., 1999;

Wang, 1996), on ®ndings showing that the human cognitive architecture has statis-

tical inference mechanisms that operate on frequency input (Cosmides & Tooby,

1996a; Gigerenzer, 1991; Gigerenzer, 1999; Gigerenzer & Hoffrage, 1995), and on

evidence for similar adaptive decision rules in other animal species (Stephens &

Krebs, 1986).

These ®ndings suggest a perspective on ambiguity avoidance that is different from

other currently discussed theories. In contrast to these theories, our approach starts

from the assumption that choices under ambiguity re¯ect a rational decision making

strategy rather than a fallacy or shortcoming in the cognitive processes that generate

human judgments. This approach has several advantages. First, ambiguity avoidance

is theoretically explained by an existing normative theory that applies across species

and has already been validated on some nonhuman species. Thus it has parsimony on

its side. The approach is parsimonious in another way as well: it applies not only to

the speci®c case of decision under ambiguity but to the more general case of

decision under uncertainty. Thus once the relevant information (state of being,

need, mean payoff and variability) is speci®ed, choices can be predicted whether

the subject is deciding between a known-risk and an ambiguous prospect, a known-

riskand a sure prospect, or two known-risk prospects. Moreover, because all deci-

sion-types are made by the same algorithm, choices can be predicted regardless of

the level of probability.

This is not true for alternative theories, such as the motivational or cognitive

models introduced in the beginning of this article. For example, previous research

on the ambiguity effect sometimes replicated the ®nding that people prefer ambi-

guity if the probability of winning is low (Curley & Yates, 1985; Einhorn &

Hogarth, 1985). This result is dif®cult for all prior models to account for, especially

for those proposing that a comparison process is the underlying source of systematic

ambiguity avoidance. For instance, if people avoid ambiguous options because they

feel less competent reasoning about uncertain probabilities, as competence theory

claims (Heath & Tversky, 1991; Fox & Tversky, 1995), then there is no obvious

reason why this process should favor ambiguous options when the probability of

winning is small anyway. The same problem applies to Curley's argument that

known-risk options are easier to justify to other people. Why should there be a

difference when the probabilities at stake are low? Both models, as well as the

anchoring and adjustment theory, need additional theoretical assumptions to account

for these data that fundamentally differ from the general explanation of the ambi-

guity. As a result, they have to posit different mechanisms to account for the various

empirical ®ndings. In contrast, our approach can account for these data by suggest-

ing that decisions are based on assumptions regarding the probability distribu-
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tions (see Discussion section of Experiment 4) and one generally applicable decision

rule.

This rule has three major components, none of which is entirely new in the

decision making literature. Expected utility has been the core concept of decision

making under uncertainty since its invention by Bernoulli. But outcome variability

and aspiration level have also been acknowledged as important features of decision

making processes. For example, outcome variability has been studied by Coombs

and Pruitt (1960), who found ``a preference for certain amounts of variance'' (p.

276), and by Lichtenstein (1965), who, contrary to the Coombs and Pruitt results,

found variance avoidance.

Similarly, aspiration level has been mentioned as a relevant factor for decision

making (Payne, Laughlunn & Crum, 1980; Lopes, 1996), but ``subjects' goals and

aspirations have not played a prominent part either practically or theoretically in the

development of decision theory'' (Lopes, 1983, p. 143). In contrast to our studies,

these previous attempts to study variance and aspiration level were motivated by a

conviction that they were intuitively plausible, rather than by a normative theory

according to which these variables are important.

This lack of theory might have led to the inconsistent results of prior experiments.

In those studies, the relevant variables were not investigated in a context in which

their effects could be observed. In our experiments, we intentionally combined

aspiration and variance factors in a way that would be meaningful to the subjects

if the theory were correct. Thus, these experiments were, in principle, capable of

yielding consistent ®ndings that can be interpreted in terms of an adaptive algorithm

that works if given the appropriate input.

Our results are not necessarily inconsistent with certain aspects of other theories

of decision making. Tversky and Kahneman (1992), for example, have proposed

Cumulative Prospect Theory, which is explicitly considered to be merely descriptive

by the authors. Insofar as Cumulative Prospect Theory is just an empirical general-

ization about how subjects behave, it can partly account for the pattern of data found

in our experiments. If it is merely descriptive, however, then it provides no explana-

tion. Our aim is to explain why subjects choose in a certain manner, not just how they

choose. Thus, even if the data of Experiments 1±4 were fully consistent with some

other descriptive model, our approach would be theoretically preferable because it

provides an explanation.

The purpose of our experiments was to probe the design features of human

computational mechanisms and not to prove that people ``are'' either rational or

irrational. Because our goal was to elucidate design features, Experiments 3 and 4 Ð

in contrast to most decision-making studies Ð asked about lotteries in which

subjects have the opportunity to draw more than one time. This deviation from

the traditional method was necessary because of accumulating evidence that the

statistical inference mechanisms activated in this kind of study operate on frequency

input. In other words, if we want to study how such decision making mechanisms

work, we need to provide the appropriate input. Because of this methodological

change, we cannot unequivocally conclude that people apply the same cognitive

algorithm to the single-draw situations commonly used in ambiguity experiments.
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So strictly speaking, our results should be constrained to decision-making problems

in which participants draw repeatedly. We would like, however, to conclude by

reconsidering, from a functional perspective, the classical Ellsberg task introduced

in the beginning of this article.

Assume a subject may choose between one box that is ®lled with 50 black and 50

white balls and another box that is also ®lled with 100 black and white balls but in an

unknown composition. The subject is ®rst given the opportunity to win $100 by

drawing a black ball from one of these two boxes. Most subjects prefer the box that

is ®lled with 50 black and 50 white balls. Next the subject is offered the opportunity

to win another $100, but this time she must draw a white ball to win. Again, most

subjects prefer the 50/50 box. Failing to switch which box she draws from is usually

interpreted as an irrational choice because it violates the Additivity axiom, as

discussed previously. But considering the subject's needs might lead to a different

conclusion.

Typically an ambiguous option would be the higher variance one for the reasons

discussed. But in the Ellsberg problem, the variance in winning outcomes is higher

for the 50/50 box. This difference arises because, whereas black was always the

winning color in the other problems, what counts as a win changes from black to

white in the Ellsberg problem Ð a winning outcome for the ®rst draw is a losing

outcome for the second. Now suppose your goal (or self-de®ned need) in the above

situation is to win the $100 in both draws: in other words to maximize the probability

of winning $200. If this is the case, it is rational to prefer the high variance, 50/50

box for both bets. In contrast, if your goal is to avoid winning nothing Ð i.e. to win

at least $100 Ð then it is rational to prefer the low variance unknown box for both

bets. The reason is as follows:

The probability of winning with the unknown box varies depending on the distri-

bution of balls it ends up having. If the unknown box contains more black than white

balls, then one is more likely to win the ®rst bet but less likely to win the second, and

vice versa if white outnumbers black. In other words, 100 out of 101 distributions are

more likely to produce one winning outcome than two. The only distribution that

does not stack the odds against two wins is a 50/50 distribution, which can be

expected to yield two wins , 25% of the time. The known-risk box de®nitely

has a 50/50 distribution, whereas there is only 1 chance in 101 of a 50/50 distribution

in the unknown box. Because a 50/50 distribution will produce two wins more often

than other distributions, the 50/50 box should be chosen if your goal is to win both

times.

By the same logic, you should choose the unknown box for both draws if your

goal is to win at least one bet (i.e. to avoid winning nothing). The unknown box is

unlikely to produce zero wins for the same reason it is unlikely to produce two wins:

for 100 out of 101 distributions, the most frequent outcome will be one win. In

contrast, the 50/50 box will yield no wins 25% of the time.

In other words, the decision rule we have been testing applies: if you need the

mean payoff, ``forage'' in the low variance box; if you need more, forage in high

variance box. The only difference between this situation and ordinary lotteries Ð
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ones in which what counts as a win stays constant Ð is that the unknown box in the

Ellsberg lottery has lower outcome variability than the known-risk box.

Within this paradigm goal state has not been experimentally controlled and also

it is not yet clear whether people view the two steps of the task as one gamble or as

two different gambles. However, the typical choice pattern observed is either

selecting the known box for both bets or selecting the unknown box for both

bets. Given that the instructions for the Ellsberg problem do not specify a goal,

clearly distinguish between the steps, or clearly frame it as one single problem, it

may be speculated that subjects determine their needs individually without the

experimenter's knowledge and act in accordance with the theoretical framework

presented in this article.

The results of these experiments indicate that subjects take both mean, variance,

and need level into account in making decisions under uncertainty. Moreover, in

Experiment 4, their answers re¯ected the true probabilities of each box satisfying

their need level, suggesting the operation of a very well-designed system.

Given these results, a reasonable person might ask, Are these judgments the

output of an evolved system? Or do people learn the relevant pieces of information

and the equations for combining them through experience?

Before addressing this question, let us pose it more precisely. Optimal foraging

theory is an explicit account of some of the selection pressures that should have

shaped mechanisms for making judgments under uncertainty in foraging animals.

Based on this theory, animal behavior researchers have found evidence of mechan-

isms in nonhuman animals that generate the judgments one would expect if these

mechanisms were functionally specialized for solving the adaptive problems

described by optimal foraging theory. Based on both considerations Ð the selection

pressures and the evidence from the literature on risk-sensitive foraging in other

animals Ð we predicted that humans, who were also shaped by a selective history of

foraging, would also have evolved mechanisms that are functionally specialized for

making such decisions. Just as your retina can compute the second derivative of the

local distribution of light intensity (regardless of whether you have ever taken a

course in calculus; Gallistel, 1990), we predicted that the mechanisms that generate

these judgements are designed to combine data about means, variances, and need

level in the mathematically appropriate ways to generate a well-calibrated judgment

(regardless of whether the subject has ever had explicit instruction in probability

theory). Our hypothesis is that the mechanism is functionally specialized for this

purpose, in the same way that the language faculty is thought to be functionally

specialized for the acquisition of language (Pinker, 1994).

Every evolved mechanism (including the language faculty) requires certain envir-

onmental conditions to develop properly, and we assume the mechanisms we have

hypothesized are no exception. We frame no speci®c hypotheses about what role

experience might have in the development of these mechanisms; we do note,

however, that they appear to reliably develop within the boundaries of (ancestrally)

normal variations in environmental conditions, and in the absence of explicit

instruction.

The alternative ``learning'' view makes two claims: (1) people lack a mechanism
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functionally specialized for risk-sensitive foraging, and (2) using other mechanisms

(ones not specialized for this purpose), people somehow learn that means, variances,

and need levels (and not other kinds of data) are relevant, and they learn how to

combine these variables in the mathematically appropriate ways, incidentally and

without conscious deliberation. The primary difference is that the learning view

posits an mechanism that is not specialized for making this kind of judgment

under uncertainty. Also, there is not just one learning view, but many: many differ-

ent algorithms can cause learning (compare those that cause the acquisition of

syntax to those that cause the acquisition of food aversions). Without knowing

exactly which learning algorithm is being proposed, one cannot say with certainty

whether it is, or is not, capable of acquiring the knowledge of which variables are

relevant and how they should be combined.

Nevertheless, the plausibility of the learning view(s) can be evaluated in a quali-

tative sense by asking whether subjects are good at learning simpler probability

relations. To do this, consider the literature on how people reason about frequencies

versus the probability of single events (e.g. Gigerenzer, 1991; Gigerenzer &

Hoffrage, 1995; Cosmides & Tooby, 1996). In experiment after experiment, subjects

given problems in which they are asked to compute the probability of a single event

fail miserably (see also Kahneman et al., 1982).

Yet a simple way to solve these problems is to translate them into a frequency

format; indeed, if the experimenter makes this translation for the subject, the

subject will perform very well (Gigerenzer & Hoffrage, 1995; Cosmides &

Tooby, 1996a). But there are data indicating that only 12±36% of college students

spontaneously learn to make this translation (see Cosmides & Tooby, 1996). If 66±

88% of people fail to learn such a simple translation function through incidental

learning, then how likely is it that a similar process would cause the majority of

subjects to induce the solution to the vastly more complicated problems that we

gave them? Footnote 2 shows the formula that the experimenters needed to use to

calculate the true probabilities: the calculations were complex and laborious, even

though we knew what the relevant variables were. According to the learning view,

the subject would ®rst have to segregate out all and only means, variances, and

need levels as the relevant variables, then induce the formula in footnote 2, and

then carry out the calculations Ð all using mechanisms that are not specialized for

this purpose, and that do not have the relevant formulas or calculatory machinery

built into their design.

Given the dif®culty of the task and the inability of subjects to solve simpler tasks

within the same domain, we ®nd the learning view implausible. The data are, after

all, surprising: this is not the kind of calculation that one would expect untutored

subjects to routinely make with ease. When a prior prediction, derived from a well-

formulated theory, is con®rmed by surprising data, the hypothesis that gave rise to

that prediction deserves careful consideration. Future data may, of course, change

our conclusion. But until such data emerges, we think it is more parsimonious to

assume that a mechanism specialized for making risk-sensitive judgments has

evolved in humans, just as it has in other animals, and that our subjects' judgments

were generated by this functionally specialized mechanism.
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9. Conclusion

The people who participated in our experiments executed complex decision stra-

tegies, ones that take into account three parameters Ð mean, variance, and need

level Ð rather than just the single parameter (mean) emphasized by some normative

theories. Their intuitions were so on target, that their decisions very closely tracked

the actual probabilities of each box satisfying their needs. This was true even though

explicitly deriving these probabilities is a nontrivial mathematical calculation.

Indeed, the people in our experiments did something quite sophisticated: they

used meta-probability information. They were given information about the popula-

tion of possible probability distributions and the process that would be used to

determine which one the unknown box would contain. From this, they appear to

estimate the variability of possible outcomes and use this estimate to make a rational

decision.

If one considers the kinds of adaptive problems that foraging animals encountered

during their evolutionary history, people's ability to estimate the variance of both

outcomes and probability distributions may seem less surprising. Consider two

groves of fruit trees. Neither the expected outcome of a foraging trip nor the prob-

ability of a given outcome is likely to stay constant. Many factors Ð ¯uctuations in

wind conditions, season, your own state of health, the population of tree-dwelling

predators, and so on Ð can affect the probability that you will be able to harvest a

given amount from a grove. Some days there will be a high probability of getting a

certain take, on others there will be a low probability, but one does not always know

in advance what probability will pertain today. Rather than collapsing all the

outcomes and probabilities of outcomes that obtain under different conditions into

an omnibus expected value, risk-sensitive foraging theory says that an animal is

better off if it can use information about the variance associated with these outcomes

and probability distributions.

Like many optimality models from evolutionary biology, risk-sensitive foraging

theory includes parameters such as the organism's current state and its level of need

Ð values rarely considered in the normative theories popular in cognitive psychol-

ogy. One should not expect the cognitive architectures of evolved organisms to be

``rational'' when rationality is de®ned as adherence to a normative theory drawn

from mathematics or logic. One should expect their cognitive architectures to be

ecologically rational: well-designed for solving the adaptive problems their ances-

tors faced during their evolutionary history (Cosmides & Tooby, 1996b; [Tooby &

Cosmides., 1999]).
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