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The human brain is a set of computational machines, each of
which was designed by natural selection to solve adaptive
problems faced by our hunter–gatherer ancestors. These
machines are adaptive specializations: systems equipped with
design features that are organized such that they solve an
ancestral problem reliably, economically and efficiently. The
search for functionally specialized computational adaptations
has now begun in earnest. A host of specialized systems have
recently been found, including ones designed for sexual
motivation, social inference, judgment under uncertainty and
conditioning, as well as content-rich systems for visual
recognition and knowledge acquisition. 
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Introduction
In this article, we shall review some of the recent evidence for
functionally specialized problem-solving machinery in the
brain. We shall also discuss how theories of adaptive function
have been used to uncover their presence and design. 

The phenomenon that Darwin was trying to explain is the
presence of functional organization in living systems —
the kind of organization that one finds in artifacts that were
designed by an intelligent engineer to solve a problem of
some kind. Darwin showed how the feedback loops of a
blind causal process — natural selection — could create
structures that looked like they were designed by an intelli-
gent engineer to solve a problem. His detailed studies of
plants and animals revealed complex structures composed
of parts that appeared to be organized to overcome repro-
ductive obstacles (e.g. the presence of predators) or to take
advantage of reproductive opportunities (e.g. the presence
of fertile mates). And this made sense: although selection
can inject problem-solving machines into the architecture
of a species, the only problems it can design machines for
solving are ones that had an impact on reproductive rates
in the environments in which a species evolved. 

Discovering how to dissect the architecture of a species in
a way that illuminates its functional organization and
explains its presence has been a foundational task for evo-
lutionary biology ever since. To arrive at the appropriate
construal, one must conceptualize this architecture as com-
posed of nonrandom parts that interact in such a way that

they solve adaptive problems. This requires theories of
adaptive function. These are engineering specifications,
which provide analyses of what would count as good
design for a particular problem [1]. In so doing, they also
provide the criteria necessary to decide whether a property
of an organism is a design feature, a functionless 
by-product, a kludge in the system, or noise. 

The functional organization of the brain can be illuminated
by applying the same biological theories and principles. The
task of cognitive neuroscience is to reverse-engineer the
brain: to dissect its computational architecture into function-
ally isolable information-processing units, and to determine
how these units operate, both computationally and physically.
A correct dissection is one that illuminates the design of these
units and explains their presence. The engineering specifica-
tions that a good theory of adaptive function provides are
essential to this enterprise. Theories of adaptive function can
tell one several things. First, they can suggest what kind of
computational machines to look for (e.g. units designed for
tasks such as: choosing a fertile mate; minimizing contagion;
foraging; caring for children; predicting the trajectories of
inanimate objects; predicting the behavior of predators, prey,
and other members of one’s own species). Second, they can
tell us what would count as a good design for solving each of
these problems. Third, they can reveal when a unit designed
for solving one task will be unable to solve another. The 
latter is important: when the computational requirements of
two tasks differ, one expects selection to have created a 
different computational system for accomplishing each — that
is, two different functionally specialized adaptations [2,3••]. 

This expectation is at variance with associationist and
other unitarian views of the brain, which many cognitive
neuroscientists have inherited from the parent disciplines
of neuroscience and cognitive psychology. As Gallistel
[4••] puts it, 

“It is odd but true that most past and contemporary
theorizing about learning does not assume that
learning mechanisms are adaptively specialized for
the solution of particular kinds of problems. Most
theorizing assumes that there is a general-purpose
learning process in the brain, a process adapted only
to solving the problem of learning. There is no
attempt to formalize what the problem of learning is
and thereby determine whether it can in fact be
conceived as a single or uniform problem. From a
biological perspective, this assumption is equiva-
lent to assuming that there is a general-purpose
sensory organ, which solves the problem of sensing.”

Gallistel [4••] has analyzed various learning problems solved
by desert ants, bees, pigeons, and other animals, showing:
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first, that they are incommensurate; second, that each is
solved by a different computational machine that is special-
ized for that task; and third, that associative theories of
learning are incapable of explaining the animal learning data.
We will begin with this last result, because associationist
expectations about the brain persist and continue to organize
research agendas in cognitive neuroscience, despite demon-
strations that associationist mechanisms are not capable of
explaining many features of human cognition [4••,5••,6,7].

Content-general systems: functional
specialization and adaptive design
A computational adaptation can be content-general — that
is, it can operate on information drawn from many different
domains — yet still be functionally specialized. Classical
and operant conditioning provide a case in point. According
to traditional accounts, conditioning is produced by 
associative mechanisms that track spatio-temporal
contiguity — the paradigmatic general-purpose learning
process. In contrast, adaptationist analyses suggest that the
mechanisms that produce conditioning are functionally 
specialized for efficient foraging in the wild [5••]. Rates of
reward differ at different foraging sites and under different
foraging conditions: a well-designed mechanism should be
sensitive to these differences in rates, detect changes in
them, and take into account the statistical uncertainties
inherent in a limited number of observations. Foragers need
to compute temporal contingencies, not contiguities. Based
on this evolutionary task analysis, Gallistel and Gibbon [5••]
argue that, formally, this problem corresponds to multivari-
ate nonstationary time-series analysis; they demonstrate that
associative mechanisms are incapable of performing the
necessary computations, and provide an alternative compu-
tational model that is. Their model predicts many known
conditioning phenomena that associationist models cannot
account for, such as the time-scale invariance of condition-
ing, the failure of partial reinforcement to influence the
speed of acquisition and extinction, and blocking. This
model also has important implications for neuroscience
research on the cellular underpinnings of learning and 
memory, because it proposes that conditioning is mediated
by representational mechanisms rather than by changes in
the strength of associative bonds.

Work on judgment under uncertainty in humans has also
uncovered mechanisms that are relatively content-general,
yet functionally specialized. The human cognitive architec-
ture seems to contain statistical inference mechanisms that
embody the constraints of Bayes’s rule, but that require
information in an ecologically valid format (absolute 
frequencies); moreover, as the Gallistel and Gibbon model
suggests, these mechanisms distinguish between frequen-
cies and confidence (i.e. uncertainty; [8]). Humans, like
other animals, have decision-making algorithms that take
into account the expected value of alternative resources,
their variances, and the individual’s own need-level, 
combining these three sources of information in the ways
that optimal foraging theory predicts [9,10].

Note that although these systems can operate on a wide
array of contents, they are designed for solving problems
that arise in a particular domain — foraging — and they are
specialized for solving foraging problems. Other adaptive
problems, such as learned taste aversions and danger avoid-
ance, also rely on the computation of temporal
contingencies and may use some of the same machinery.
Despite some overlap, however, the solution to these prob-
lems requires additional, functionally specialized machinery
(with different brain regions implicated) [11,12]. Selection
can specialize the performance of a computational machine
by giving it what amounts to innate knowledge about a
domain, and this appears to have happened in many
domains that come under the heading of ‘conditioning’
[13,14]. This would include the existence of domain-
specialized unconditioned stimulus–unconditioned
response (US–UR) relationships (e.g. toxins and enzyme
induction [15], snakes and avoidance [16]), as well as 
content-specific, privileged hypotheses about conditioned
stimulus–unconditioned stimulus (CS–US) relationships
(e.g. taste and nausea [13,17]). Accordingly, some forms of
conditioning enjoin the neostriatum, others the neocortex
and amygdala, and yet others the cerebellum [11,12].

Content-specific systems: functional
specialization and adaptive design
Another way to specialize and thereby improve the perfor-
mance of a computational machine is to restrict its domain
of application. A domain-restricted device can be endowed
with content: with assumptions, privileged hypotheses, and
inference procedures that are appropriate to a domain, but
may be irrelevant or even misleading when applied outside
that domain. Configural information about the human face
may help infants to recognize their parents, but will be
useless for recognizing plants; assuming that invisible
mental states (beliefs and desires) exist may help predict
the behavior of people but will be useless for predicting
the behavior of rocks; inferential procedures specialized
for cheater detection will help catch violations of agree-
ments to exchange, but will be useless for detecting
violations of logical rules or scientific hypotheses. A system
that contains a number of content-rich, expert systems of
this kind has a decisive advantage over a system limited to
executing content-free ‘rational algorithms’ derived from
probability theory, mathematics, or logic. Rational algo-
rithms are defined by what they lack: content. They are
computationally weak precisely because they were
designed to produce valid inferences in all domains. They
can only do so, however, if they are stripped of all informa-
tion and all procedures that would be helpful in one
domain but counter-productive in another. 

Category-specific recognition systems can serve as filters
for category-specific semantic and inferential systems, so
one might expect bundles of content-specific, domain-spe-
cialized knowledge to come in vertically integrated
packages, sometimes called intuitive ontologies [18].
Social interaction, for example, may require procedures for
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quickly recognizing individual human beings (visual
recognition), retrieving information about their personali-
ties (semantic and episodic memory [6]), and making
inferences about their beliefs, desires, and probable behav-
ior (theory of mind [19]); a bundle that, taken together, is
sometimes called folk psychology. This bundle may 
contain different procedures than those designed for 
predicting the interactions of inanimate objects (folk
physics) or for plants and animals (surely important 
categories for any omnivorous forager). 

An ontology refers to what kinds of things exist in the
world, and reviews of the evidence from cognitive neuro-
science and development suggest that the cognitive
architecture has vertically integrated intuitive ontologies
that cleave the world into kinds, such as people, animals,
plants, artifacts, and locations [18]. Evidence for content-
specific, functional specializations exists for visual
recognition, semantic memory, and inference.

Visual recognition
Because people can recognize a wide array of items, many
vision scientists have assumed that visual recognition is
governed by content-general procedures. However, there
is now considerable support for the existence of content-
specific, functionally specialized recognition systems for:
facial identity [20,21,22•,23,24••,25•,26••,27•,28•] (but see
[29•]); particular facial expressions of emotion [30•,31–33];
places [34,35]; and animals [36,37,38••]. It also seems likely
from an evolutionary perspective that there are specialized
systems for recognizing many other visual categories that
have either been only hinted at (actions [39,40]; snakes
[41]; body parts [42,43]; fruits and vegetables [44]) or not
yet documented (water, plants, blood). 

Semantic knowledge
For almost 20 years, cognitive neuropsychologists have doc-
umented patients who are differentially impaired in
accessing semantic information about either animate or inan-
imate things. However, resistance to the notion that semantic
memory may contain category-specific subsystems spawned
a number of alternative explanations. Recently, Caramazza
and his colleagues [45–47] have argued that these alterna-
tives cannot explain the facts, and have made a very strong
case for the existence of both an animate semantic system
and an inanimate semantic system. Other neuropsychological
cases suggest further cleavages, for example, between edible
plants (fruits and vegetables) and other types of food [48–50].
Knowledge about people’s personality traits is stored in both
episodic and semantic memory, the latter in the form of trait
summaries [6]. Studies with amnesics and individuals with
autism show that a person who is unable to retrieve 
behavioral episodes may still be able to access and even
update trait summaries [51–53]. Moreover, rules for retrieval
are content-specific: retrieving a trait summary primes
episodes that are inconsistent with that trait, but not ones
that are consistent with it (a pattern that shows adaptive
design for bounding the scope of generalizations [6]). 

Inferential specializations
Research in cognitive development indicates that there are
specialized inference engines for domains such as folk psy-
chology [19,54], folk biology [55,56], naïve physics [57,58],
and number [59•,60], which emerge either in infancy or
early childhood. Some of the most striking dissociations
involve mindreading (inferring other people’s mental
states) [54,61•,62,63]. For example, although individuals
with autism can compute eye direction and know what
someone is looking at, they cannot use this information to
infer that the person wants (mental state) what he is look-
ing at (normal three-year-olds can do this) [19]. The ability
to understand mental representations (beliefs) sharply 
dissociates from the ability to understand physical repre-
sentations (photographs, maps) [54]. Autism and frontal
lobe damage can selectively interfere with mind-reading
[19,54,61•,63], which activates different brain regions than
making inferences about inanimate objects [64]. Within
the domain of social cognition, there is evidence of even
more specialized inferential procedures. For example,
both functional and neuropsychological evidence indicates
that detecting cheaters in social exchange is governed by
different reasoning mechanisms than detecting violations
of hazard/precaution rules (and both are different from rea-
soning about nonsocial relationships [65,66]). 

Motivation and choice systems: content-
specificity and adaptive design
The work reviewed above involves systems designed for
acquiring knowledge and information, which are value-free.
Such systems would have been useless, however, unless they
were coupled to motivational systems that generated adaptive
choices and behaviors in ancestral environments. Choice
requires standards of value, and these must differ from one
domain to the next (e.g. the same criteria cannot govern food
choice and mate choice) for behavioral outcomes to track 
fitness. Moreover, the traditional division of mammalian moti-
vation into systems for sex, hunger, thirst, and survival is too
coarse a divide. It fails to capture the intricacies of adaptive
design within the systems posited, and omits many systems
that are known to exist in other mammals (some of which may
exist in humans). This taxonomy omits, for example, adapta-
tions for parenting; these surely exist in the class Mammalia (!),
and should be interestingly different for females and males
[67]. Nor can it accommodate the neurocognitive system that
causes virgin male mice to commit infanticide, counts
day/light cycles after first intravaginal ejaculation, and switches
the male’s behaviour from infanticide to parenting at the point
at which the pups could be his. Adding an entry for ‘aggres-
sion’ would not help: this does not differentiate among
infanticide (found in mice and langur monkeys, but not in
many other species), individual jockeying for dominance
(most primates), and the system that causes chimpanzees to
form multi-male coalitions and raid neighboring groups (a 
pattern not found in other apes or monkeys [68]). 

Recent work showing detailed adaptive design in the mate
preferences and sexual motivations of human females
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illustrates the inadequacies of positing an undifferentiated
‘motivation for sex’. Women’s motivation for engaging in
sex and their criteria for choosing sexual partners change in
theoretically principled ways during fertile and non-fertile
phases of the menstrual cycle. Not only do peaks in
women’s sexual desire occur most frequently during fertile
phases [69], but their preferences also change at ovulation.
Although mate preferences in females are designed to
assess a man’s willingness and ability to invest in her 
offspring, as well as his genetic quality (e.g. heritable 
disease resistance), one would expect cues indicating
genetic quality to be weighted more heavily when the
probability of conception is highest. During fertile phases,
women find testosterone-related facial characteristics,
which may honestly advertise immunocompetence, more
attractive than they do during non-fertile phases [70•,71•].
Moreover, this preference shift is more extreme for women
contemplating short-term matings [70•]. Similarly, women
prefer the scent of men with other, nonfacial markers of
genetic quality during fertile periods, but have no system-
atic preference during non-fertile periods [72,73•,74]. 

Conclusions
If cognitive neuroscience is to succeed in dissecting the
brain into functional units, a more theoretically driven
approach to dissociating different systems will be neces-
sary. For the most part, the dissociations found in object
recognition and semantic systems have been found by 
noting patterns of spared and impaired performance in
brain-damaged subjects. But a theoretically agnostic
approach restricts the range of discoverable dissociations to
those the subject happens to notice (e.g. inability to recog-
nize faces) and those for which assessment tools already
exist. Only by proactively searching for dissociations
between evolutionarily motivated categories — including
systems governing motivation and choice — will cognitive
neuroscientists discover the full spectrum of functionally
specialized mechanisms. 
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