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Theories in Cognitive
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LEDA COSMIDES AND JOHN TOOBY

ABSTRACT The cognitive neuroscience of central processes is
currently a mystery. The brain is a vast and complex collec-
tion of functionally integrated circuits. Recognizing that nat-
ural selection engineers a fit between structure and function
is the key to isolating these circuits. Neural circuits were
designed to solve adaptive problems. If one can define an
adaptive problem closely enough, one can see which circuits
have a structural design that is capable of solving that
problem. Evolutionary biologists have developed a series of
sophisticated models of adaptive problems. Some of these
models analyze constraints on the evolution of the cognitive
processes that govern social behavior: cooperation, threat,
courtship, kin-directed assistance, and so on. These forms
of social behavior are generated by complex computational
machinery. To discover the functional architecture of this
machinery, cognitive neuroscientists will need the powerful
inferential tools that evolutionary biology provides, includ-
ing its well-defined theories of adaptive function.

The cognitive sciences have been conducted as if
Darwin never lived. Their goal is to isolate functionally
integrated subunits of the brain and determine how
they work. Yet most cognitive scientists pursue that
goal without any clear noton of what “function”
means in biology. When a neural circuit is discovered,
very few researchers ask what its adaptive function is.
Even fewer use theories of adaptive function as tools
for discovering heretofore unknown neural systems. In-
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deed, many people in our field think that theories of
adaptive function are an explanatory luxury—fanciful,
unfalsifiable speculations that one indulges in at the
end of a project, after the hard work of figuring out the
structure of a circuit has been done.

In this chapter, we will argue that theories of adap-
tive function are not a luxury. They are a necessity,
crucial to the future development of cognitive neuro-
science. Without them, cognitive neuroscientists will
not know what to look for and will not know how to
interpret their results. As a result, they will be unable
to isolate functionally integrated subunits of the brain.

Explanation and discovery in cognitive neuroscience

[t}rying to understand perception by studying only neurons
is like trying to understand bird flight by studying only feath-
ers: it just cannot be done. In order to understand bird flight,
we have to understand aerodynamics; only then do the struc-

ture of feathers and the different shapes of birds’ wings make
sense. (Marr, 1982, 27)

David Marr developed a general explanatory system
for cognitive science that is much cited but rarely ap-
plied. His three-level system applies to any device that
processes information—a calculator, a cash register, a

television, a computer, a brain. It is based on the fol-
lowing observations:

1. Information-processing devices are designed to
solve problems.

2. They solve problems by virtue of their structure.
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3. Hence, to explain the structure of a device, one
1ecds to know
a. what problem it was designed to solve, and

b. why it was designed to solve that problem and not
ome ather one.

[n other words, one must develop a task analysis of the
problem, or what Marr called a computational theory.
Knowing the physical structure of a cognitive device
and the information-processing program realized by
that structure is not enough. For human-made artifacts
and biological systems, form follows function. The
physical structure is there because it embodies a set of
programs; the programs are there because they solve a
particular problem. A computational theory specifies
what that problem is and why there is a device to solve
it. It specifies the function of an information-processing
device. Marr felt that the computational theory was
the most important and the most neglected level of
explanation in the cognitive sciences.

This functional level of explanation has not been
neglected in the biological sciences, however, because
it is essential for understanding how natural selection
designs organisms (for background, see chapter 78).
An organism’s phenotypic structure can be thought of
as a collection of design features—of machines, such as
the eye or liver. A design feature can cause its own
spread by solving adaptive problems—problems, such
as detecting predators or detoxifying poisons, that re-
cur over many generations and whose solution tends to
promote reproduction. Natural selection is a feedback
process that “‘chooses” among alternative designs on
the basis of how well they function. By selecting designs
on the basis of how well they solve adaptive problems,
this process engineers a tight fit between the function of
a device and its structure. To understand this causal
relationship, biologists had to develop a theoretical
vocabulary that distinguishes between structure and
function. Marr’s computational theory is a functional
level of explanation that corresponds roughly to what
biologists refer to as the “ultimate” or “functional”
explanation of a phenotypic structure.

Even though there is a close causal relationship be-
tween the function of an information-processing device
and its structure, a computational theory of a device
does not uniquely specify its structure. This is because
there are many ways to skin a cat. More precisely:

4. Many different information-processing programs
can solve the same problem. These programs may dif-
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fer in how they represent information, in the processes
whereby they transform input into output, or both. So
knowing the goal of a computation does not uniquely
determine the design of the program that realizes that
goal in the device under consideration.

5. Many different physical systems—from neurons
in a brain to silicon chips in a computer—can imple-
ment the same program.! So knowing the structure of
a program does not uniquely determine the properties
of the physical system that implements it. Moreover,
the same physical system can implement many pro-
grams, so knowing the physical properties of a system

cannot tell one which programs it implements (table
79.1)

A computational theory defines what problem the
device solves and why it solves it, but it does not specify
how this is accomplished; theories about programs and
their physical substrate specify how the device solves
the problem. Each explanatory level addresses a differ-
ent question. To understand an information-processing ;
device completely, Marr argued, one needs explana- 3
tions on all three levels: computational theory, pro- °
gramming, and hardware (see table 79.1).

A computational theory of function is more than an |
explanatory luxury, however. It is an essential tool for
discovery in the cognitive and neural sciences. Wheth- !
er 2 mechanism was designed by natural selection or |

Tasre 79.1
Three levels at which any machine carrying out an information-
Drocessing task must be understood
1. Computational theory: ,
What is the goal of the computation, why is it appropri-

ate, and what is the logic of the strategy by which it can be
carried out?

2. Representation and algorithm:

How can this computational theory be implemented? In
particular, what is the representation for the input and out-
put, and what is the algorithm for the transformation?

3. Hardware implementation:

How can the representation and algorithm be realized
physically?

In evolutionary biology:

Explanations at the level of the computational theory are
called uitimate-level explanations.

Explanations at the level of representation and algorithm,

or at the level of hardware implementation, are called proxi-
mate-level explanations.

From Marr, 1982, 25.



_by the intentional actions of a human engineer, one
can count on there being a close causal relationship
between its structure and its function. A theory of
function may not determine a program’s structure
.uniquely, but it reduces the number of possibilities to
an empirically manageable number. Task demands
radically constrain the range of possible solutions; con-
sequently, very few cognitive programs are capable of
solving any given adaptive problem. By developing a
careful task analysis of an information-processing prob-
lem, one can vastly simplify the empirical search for
the cognitive program that solves it. And once that
program has been identified, it is ecasy to develop clini-
cal tests that will target its neural basis.

It is currently fashionable to think that the findings
of neuroscience will eventually place strong constraints
on theory formation at the cognitive level. In this view,
once we know enough about the properties of neurons,
neurotransmitters, and cellular development, figuring
out what cognitive programs the human mind contains
will become a trivial task. This cannot be true. There
are millions of animal species on earth, each with a
different set of cognitive programs. The same basic neural
tissue embodies all of these programs. Facts about the prop-
erties of neurons, neurotransmitters, and cellular devel-

opment cannot tell one which of these millions of pro-
grams the human mind contains.

The cognitive structure of an information-processing
device “depends more upon the computational prob-
lems that have to be solved than upon the particular
hardware in which their solutions are implemented”
(Marr, 1982, 27). In other words, knowing what and
why allows one to generate focused hypotheses about
how. To figure out how the mind works, cognitive neu-
roscientists will need to know what problems our cog-
nitive and neural mechanisms were designed to solve.

Beyond intuttion: How to build a computational
theory

To illustrate the notion of a computational theory,
Marr asks us to consider the what and why of a cash
register at a checkout counter in a grocery store. We
know the what of a cash register: [t adds numbers.
Addition is an operation that maps pairs of numbers
onto single numbers, and it has certain abstract prop-
erties, such as commutativity and associativity (table
79.2). How the addition is accomplished is quite irrele-
vant: Any set of representations and algorithms that
satisfies these abstract constraints will do. The input to
the cash register is prices, which are represented by
numbers. To compute a final bill, the cash register
adds these numbers together. That’s the what.

But why was the cash register designed to add the

TasLE 79.2
Why cash registers add
Rules governing social exchange in a
Rules defining addition supermarket
There is a unique element, “zero”; Adding If you buy nothing, it should cost you
zero has noeffect: 2 + 0 = 2 nothing; and buying nothing and

Commutativity: (2 +3) = (3 +2) =5
Associativity: (2 4+ 3) + 4= 2+ (3 +4)
Each number has a unique inverse that when

added to the number gives zero:
2+(~2)=0

something should cost the same as buying
just the something. (The rules of zero)
The order in which goods are presented to

the cashier should not affect the total.
(Commutativity)

Arranging the goods into two piles and
paying for each pile separately should not
affected the total amount you pay.
(Associativity; the basic operation for
combining prices)

If you buy an item and then return it for a

refund, your total expenditure shouid be
zero. (Inverses)

Adapted from Marr, 1982, 22-23,
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prices of each item? Why not multiply them together,
or subtract the price of each item from 100? According
to Marr, “the reason is that the rules we intuitively feel to
be appropriate for combining the individual prices in fact
define the mathematical operation of addition” (p. 22,
emphasis added). He formulates these intuitive rules as
a series of constraints on how prices should be com-
bined when people exchange money for goods, then
shows that these constraints map directly onto those
that define addition (see table 79.2). On this view, cash
registers were designed to add because addition is the
mathematical operation that realizes the constraints on
buying and selling that our intuitions deem appropri-
ate. Other mathematical operations are inappropriate
because they violate these intuitions; for example, if the
cash register substracted each price from 100, the more
goods you chose the less you would pay—and if you
chose enough goods, the store would pay you.

In this particular example, the buck stopped at intu-
ition. But it shouldn’t. Our intuitions are produced
by the human brain, an information-processing device
that was designed by the evolutionary process. To dis-
cover the structure of the brain, one needs to know what
problems it was designed to solve and why it was de-
signed to solve those problems rather than some others.
In other words, one needs to ask the same questions of
the brain as one would of the cash register. Cognitive
science is the study of the.design of minds, regardless of
their origin. Cognitive neuroscience is the study of the
design of minds that were produced by the evolution-
ary process. Evolution produced the what, and evolu-
tionary biology is the study of why. Most cognitive
neuroscientists know this. What they don’t yet know is
that understanding the evolutionary process can bring
the architecture of the mind into sharper relief. For
biological systems, the nature of the designer carries
implications for the nature of the design.

The brain can process information because it con-
tains complex neural circuits that are functionally
organized. The only component of the evolutionary
process that can build complex structures that are
functionally organized is natural selection. And the
only kind of problems that natural selection can build
complexly organized structures for solving are adap-
tive problems (Williams, 1966; Dawkins, 1986; Tooby
and Cosmides, 1990, 1992, this voiumc). Bearing this
in mind, let us consider the source of Marr’s intuitions
about the cash register. Buying food at a grocery store
is a form of social exchange-—cooperation between two
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or more individuals for mutual benefit. The adaptive
problems that arise when individuals engage in this
form of cooperation have constituted a long-enduring
selection pressure on the hominid line. Paleoanthropo-
logical evidence indicates that social exchange extends
back at least two million years in the human line, and
the fact that social exchange exists in some of our pri-

* mate cousins suggests that it may be even more ancient

than that. It is exactly the kind of problem that selec-
tion can build cognitive mechanisms for solving.

Social exchange is not a recent cultural invention,
like writing, yam cultivation, or computer program-
ming; if it were, one would expect to find evidence of
its having one or several points of origin, of its having
spread by contact, and of its being extremely elabo-
rated in some cultures and absent in others. But its
distribution does not fit this pattern. Social exchange is
both universal and highly elaborated across human
cultures, presenting itself in many forms: reciprocal
gift-giving, food sharing, market pricing, and so on
(Cosmides and Tooby, 1992; Fiske, 1992). It is an an-’
cient, pervasive, and central part of human social life.

The computational mechanisms that give rise to so-
cial exchange behavior in a species must satisfy certain
evolvability constraints. Selection cannot construct mech- |
anisms in any species—including humans—that sys~}
tematically violate these constraints. In cvolutlonary
biology, researchers such as Robert Trivers, W. D
Hamilton, and Robert Axelrod have explored con- ;
straints on the evolution of social exchange using game
theory, modeling it as a repeated Prisoner’s Dilemma. ;
These analyses have turned up a number of important :
features of this adaptive problem, a crucial one being i
that social exchange cannot evolve in a species unless -
individuals have some means of detecting individuals
who cheat and excluding them from future mterac- :
tions (e.g., Williams & Williams, 1957; Trivers, 1971;
Axelrod and Hamilton, 1981; Axelrod, 1984; Bovd,
1988). ;

Behavioral ecologists have used these constraints on
the evolution of social exchange to build computa-
tional theories of this adaptive problem—theories of
what and why. These theories have provided a princi-
pled basis for generating hypotheses about the pheno-
typic design of mechanisms that generate social ex-
change in a variety of species. They spotlight design
features that any cognitive program capable of solving
this adaptive problem must have. By cataloging these
design features, animal behavior researchers were able
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to look for—and discover—previously unknown as-
pects of the psychology of social exchange in species
from chimpanzees, baboons and vervets to vampire
bats and hermaphroditic coral-reef fish (e.g., Smuts,
1986; de Waal and Luttrell, 1988; Fischer, 1988; Wilk-
inson, 1988, 1990). This research strategy has been
successful for a very simple reason: Very few cognitive
programs satisfy the evolvability constraints for social
exchange. If a species engages in this behavior (and not
all do), then its cognitive architecture must contain one
of these programs.

In our own species, social exchange is a universal,
species-typical trait with a long evolutionary history.
We have strong and cross-culturally reliable intuitions
about how this form of cooperation should be con-
ducted, which arise in the absence of any explicit in-
struction (Cosmides and Tooby, 1992; Fiske, 1992). In
developing his computational theory of the cash regis-
ter—a tool used in social exchange—David Marr was
consulting these deep human intuitions.?

From these facts, we can deduce that the human
cognitive architecture contains programs that satisfy
the evolvability constraints for social exchange. As cog-
nitive scientists, we should be able to specify what rules
govern human behavior in this domain, and why we
humans reliably develop circuits that embody these
rules rather than others. In other words, we should be
able to develop a computational theory of the organic
information-processing device that governs social ex-
change in humans.

The empirical advantages of using evolutionary bi-
ology to develop computational theories of adaptive
problems had already been amply demonstrated in the
study of animal minds (e.g., Gould, 1982; Krebs and
Davies, 1987; Gallistel, 1990; Real, 1991). We wanted
to test its utility for studying the human mind. A pow-
erful way of doing this would be to use an evolu-
tionarily derived computational theory to discover
cognitive mechanisms whose existence no one had pre-
viously suspected. By using evolvability constraints, we
developed a computational theory of social exchange
:Cosmides, 1985; Cosmides and Tooby, 1989). It sug-
gested that the cognitive processes that govern human
reasoning might have a number of design features spe-
cialized for reasoning about social exchange—what
Gallistel (this volume; also Rozin, 1976) calls adaptive
specializations.

The goal of our research is to recover, out of care-
fully designed experimental studies, high-resolution
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“maps” of the intricate mechanisms that collectively
constitute the human mind. Our evolutionarily derived
computational theory of social exchange has been al-
lowing us to do that. It led us to predict a large number
of design features in advance—features that no one
was looking for and that most of our colleagues thought
were outlandish. Experimental tests have confirmed
the presence of all the design features that have been
tested for so far. Those design features that have been
tested and confirmed are listed in table 79.3, along
with the alternative by-product hypotheses that we
and our colleagues have eliminated. So far, no known
theory invoking general-purpose cognitive processes

"has been able to explain the very precise and unique

pattern of data that tests like these have generated.
The data are best explained by the hypothesis that
humans reliably develop circuits that are complexly
specialized for reasoning about reciprocal social inter-
actions. Parallel lines of investigation indicate that hu-
mans have also evolved additional, differently struc-
tured circuits that are specialized for reasoning about
aggressive threats and protection from hazards (e.g.,
Manktelow and Over, 1990; Tooby and Cosmides,
1989). We are now planning clinical tests to find the
neural basis for these mechanisms. By studying patient
populations with autism and other neurological im-
pairments of social cognition, we should be able to see
whether dissociations occur along the fracture lines
suggested by our various computational theories. (For
a description of the relevant social exchange experi-
ments, see Cosmides, 1985, 1989; Cosmides and Tooby,
1992; Gigerenzer and Hug, 1992.)

Since Marr, cognitive scientists have become famil-
iar with the notion of developing computational the-
ories to study perception and language, but the notion
that one can develop computational theories to study
the information-processing devices that give rise to
social behavior is still quite alien. Yet some of the
most important adaptive problems our ancestors had
to solve involved negotiating the social world, and
some of the best work in evolutionary biology is de-
voted to analyzing constraints on the evolution of
mechanisms that solve these problems. There are many
reasons for the neglect of these topics in the study of
humans, but the primary one is that cognitive scientists
have been relying on their intuitions for hypotheses
rather than asking themselves what kind of problems
the mind was designed to solve. Evolutionary biology
addresses that question. Consequently, evolutionary
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TaBLe 79.3
Reasoning about social exchange: Evidence of special design®

The following design features were predicted
and found:

A number of by-product hypotheses were
empirically eliminated. It was shown that:

The algorithms governing reasoning about
social contracts operate even in unfamiliar
situations.

The definition of cheating that these
algorithms embody depends on one’s
perspective.

They are just as good at computing the
cost-benefit representation of a social
contract from the perspective of one party
as from the perspective of another.

They embody implicational procedures
specified by the computational theory.

They include inference procedures specialized
for cheater detection.

Their cheater-detection procedures cannot
detect violations of social contracts that do
not correspond to cheating.

They do not include altruist detection
procedures.

They cannot operate so as to detect cheaters
unless the rule has been assigned the cost-
benefit representation of a social contract.

Familiarity cannot explain the social contract
effect. ’

It is not the case that social contract content
merely facilitates the application of the

rules of inference of the propositional
calculus.

Social contract content does not merely
“afford” clear thinking,

Permission schema theory cannot explain the
social contract effect; in other words,
application of a generalized deontic logic
cannot explain the results.

It is not the case that any problem involving

payofis will elicit the detection of
violations.

*To show that an aspect of the phenotype is an adaptation to perform a particular function,
one must show that it is particularly well designed for performing that function, and that it
cannot be better explained as a by-product of some other adaptation or physical law.

biology places important constraints on theory forma-
tion in cognitive neuroscience, constraints from which
one can build computational theories of adaptive infor-
mation-processing problems.

Organism design theory

Knowing that the circuitry of the human mind was
designed by the evolutionary process tells us some-
thing centrally illuminating: that, aside from those
properties acquired by chance or imposed by engi-
neering constraints, the mind consists of a set of
information-processing circuits that were designed by
natural selection to solve those adaptive problems that
our hunter-gatherer ancestors faced generation after
generation (see chapter 78). The better we understand
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the evolutionary process, adaptive problems, and an-
cestral life, the more intelligently we can explore and
map the intricacies of the human mind.

Figuring out the structure of an organism is an exer-
cise in reverse engineering; the field of evolutionary
biology summarizes our knowledge of the engineering
principles that govern the design of organisms. Taken
together, these principles constitute an organism design
theory. A major activity of evolutionary biologists is the
exploration and definition of adaptive problems. By
combining results derived from mathematical model-
ing, comparative studies, behavioral ecology, paleocan-
thropology, and other fields, evolutionary biologists try
to identify what problems the mind was designed to
solve and why it was designed to solve those problems
rather than some other ones. In other words, they ex-



plore exactly those questions that Marr argued were
essential for developing computational theories of
adaptive information-processing problems.

Computational theories address what and why, but
because there are multiple ways of achieving any solu-
tion, they are not sufficient to specify how. But the
more closely one can define what and why—the more
one can constrain what would count as a solution—the
more clearly we can see which hypotheses about mech-
anisms are viable and which are not. The more con-
straints one can discover, the more the field of possible
solutions is narrowed, and the more one can concen-
trate empirical efforts on discriminating between via-
ble hypotheses.

Natural selection is capable of producing only cer-
tain kinds of designs: designs that have promoted their
own reproduction in past environments. It constrains
what counts as an adaptive problem, and therefore
narrows the field of possible solutions. In evolutionary
analyses, cognitive scientists will discover a rich and
surprisingly powerful source of constraints from which
precise computational theories can be built. Indeed,
these analyses provide the only source of constraints for
the cognitive processes that govern human social be-
havior. Table 79.4 lists families of constraints that cog-
nitive scientists could be using, but are not.

We would like to illustrate this point with an
extended example involving social behavior. Consider
Hamilton’s rule, which describes the selection pressures
operating on mechanisms that generate behaviors that
have a reproductive impact on an organism and its
kin (Hamilton, 1964). The rule defines (in part) what
counts as biologically successful outcomes in these
kinds of situations. These outcomes often cannot be
reached unless specific information is obtained and
processed by the organism.

In the simplest case of two individuals, a mechanism
that produces acts of assistance has an evolutionary
advantage over alternative mechanisms if it reliably
causes individual ¢ to help relative j whevenever C; <
7;/B;. In this equation, C; is the cost to i of rendering an
act of assistance to j, measured in terms of foregone
reproduction; B; is the benefit to j of receiving that act
of assistance, measured in terms of enhanced reproduc-
tion; and 7 is the probability that a randomly sampled
gene will be present at the same locus in the relative
due to joint inheritance from a common ancestor.

Other things being equal, the more closely the be-
haviors produced by cognitive mechanisms conform to
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. TasLe 79.4
Evolutionary biology provides consiraints from whick computational
theories of adaptive information-processing problems can be built

To build a computational theory, one must answer two
questions:

1. What is the adaptive problem?

2. What information would have been available in ancestral
environments for solving it?

Some sources of constraints
1. More precise definition of Marr’s “goal” of processing
that is appropriate to evolved (as opposed to artificial)
information-processing systems
2. Game-theoretic models of the dynamics of natural selec-
tion (e.g., kin selection, Prisoner’s Dilemma, and coopera-
tion—particularly useful for analysis of cognitive mecha-
nisms responsible for social behavior)
3. Evolvability constraints: Can a design with propertes X,
Y, and Z evolve, or would it have been selected out by
alternative designs with different properties? (i.c., does the
design represent an evolutionarily stable strategy?—related
to point 2)
4. Hunter-gatherer studies and paleoanthropology—source
of information about the environmental background against
which our cognitive architecture evolved (Information that
is present now may not have been present then, and vice
versa.)
5. Studies of the algorithms and representations whereby
other animals solve the same adaptive problem (These will
sometimes be the same, sometimes different.)

Hamilton’s rule, the more strongly those mechanisms
will be selected for. A design feature that systematically
caused an individual to help more than this—or less
than this—would be selected against.

This means that the cognitive programs of an organ-
ism that confers benefits on kin cannot violate Hamil-
ton’s rule. Cognitive programs that systematically vio-
late this constraint cannot be selected for. Cognitive
programs that satisfy this constraint can be selected for.
A species may lack the ability to confer benefits on kin,
but if it has such an ability, then it has it by virtue
of cognitive programs that produce behavior that re-
spects this constraint. Hamilton’s rule is completely
general: It is inherent in the dynamics of natural selec-
tion, true of any species on any planet at any time. One
can call theoretical constraints of this kind evolvability
constraints; they specify the class of mechanisms that
can, in principle, evolve (Tooby and Cosmides, 1992;
Cosmides and Tooby, 1994). The evolvability con-

1205



straints for one adaptive problem usually differ from
those for another.

Under many ecological conditions, this selection
pressure defines an information-processing problem for
whose solution organisms will be selected to evolve
mechanisms. Hamilton’s rule answers the three ques-
tions that Marr said a computational theory of an
information-processing problem should answer: It
identifies the goal of a computation, why it is relevant,
and the logic of the strategy by which it can be carried
out (Marr, 1982, 25; see table 79.1).

Using this description of an adaptive problem as a
starting point, one can immediately begin to define
the cognitive subtasks that would have to be addressed
by any set of mechanisms capable of producing be-
havior that conforms to this rule. What information-
processing mechanisms evolved to reliably identify rel-
atives, for example? What criteria and procedures to
do they embody? That is, do these mechanisms define
an individual as a sibling if that individual (a) was
nursed by the same female who nursed you, (b) resided
in close contact with you during your first three years
of life, or (c) looks or smells similar to your mother,
within a certain error tolerance? What kind of infor-
mation is processed to estimate 7, ;, the degree of re-
latedness? Under ancestral conditions, did siblings and
cousins coreside, such that one might expect the evo-
lution of mechanisms that discriminate between the
two? After an: ’i:fulhib=4ri.l"inlcomin' What kind of
mechanisms would have been capable of estimating the
magnitudes of the consequences of specific actions on
one’s own and on others’ reproduction? (For example,
the estimation procedures of vampire bats could be tied
directly to volume of regurgitated blood fed to a rela-
tive, as this is the only form of help they give.) What
kinds of decision rules combine these various pieces
of information to produce behavior that conforms to
Hamilton’s rule? And so on.

This example highlights several points about the
connection between evolutionary biology and the cog-
nitive sciences:

1. Knowledge drawn from woiutionar) biology can be used

. to discover previously unknown functional organization in our
cognitive architecture. Hamilton’s rule is not intuitively
obvious; researchers would not look for cognitive
mechanisms that are well designed for producing be-
havior that conforms to this rule unless they had al-
ready heard of it. After Hamilton’s rule had been
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formulated, behavioral ecologists began to discover °
psychological mechanisms that embodied it in many
nonhuman animals (Krebs and Davies, 1987). Un-
guided empiricism is unlikely to uncover a mechanism
that is well designed to solve a problem of this kind.

2. By using the definition of an adaptive problem, one can
easily generate hypotheses about the design features of informa-
tion-processing mechanisms, even when these mechanisms are
designed to produce social behavior. Knowing the definition
of the problem allows one to break it down into cogni-
tive subtasks, such as kin recognition, kin categoriza-
tion, and cost-benefit estimation, in the same way that
knowing that the adaptive function of the visual system
is scene analysis allows one to identify subtasks such as
depth perception and color constancy.

3. Knowing the ancestral conditions under which a species
evolved can suggest fruitful hypotheses about design features of
the cognitive adaptations that solve the problem. For example,
the key task in developing a computational theory of
kin identification is identifying cues that would have
been reliably correlated with kinship in ancestral envi-
ronments without also being correlated with lack of
kinship. If there are no such cues, then a kin identifica-
tion mechanism cannot be selected for. If there are
several possible cues, then empirical tests are the only
way to determine which one(s) the system uses. Even
so, considering what kind of information was available
simplifies the task immensely: Coresidence is a reliable
cue of sibhood in some species, but other cues would
have to be picked up and processed in a species in
which siblings and cousins coreside.

4. Knowing about ancestral conditions can help one avoid
conceptual wrong turns in the interpretation of data. The cue
“looks like me” is not a good candidate cue for kin
identification, because our hunter-gatherer ancestors
did not have mirrors. It therefore would have been
difficult to form an accurate template of one’s own face
for comparison. If one were to find data suggesting that
this cue is used, one should consider conducting tests to
see whether this is an incidental correlation caused by
the use of a more likely cue, such as “looks like my
mother.”

5. 4 computational theory built from evolutionary constraints
can provide a standard of good design. A design for solving
this adaptive problem can be evaluated by determin-
ing how closely it produces behavior that tracks Ham-
ilton’s rule. Standards of good design are an essential
tool for cognitive scientists because they allow one ta
determine whether a hypothesized mechanism is capa-



ble of solving the adaptive problem in question and to
decide whether that mechanism would have done a
better job under ancestral conditions than alternative
designs.

Some programs are not capable of solving a particu-
lar problem. Hypotheses that propose such programs
should be eliminated from consideration. Cognitive sci-
entists have developed powerful methods for determin-
ing whether a program is capable of solving a problem,
but these methods can be used only if one has a de-
tailed computational theory defining what the probiem
is. Two particularly powerful methods are as follows:

a. Computational modeling. One can implement the
program on a computer, run the program, and see
what happens.

b. Solvability analysis. Theoretical analyses can some-
times reveal that a proposed program is incapable of
solving a problem. These analyses can be formal or
informal. The learnability analyses used in develop-
mental psycholinguistics are of both varieties (Pinker,
1979, 1984; Wexler and Culicover, 1980). The prob-
lem in question is how a child learns the grammar of
his or her native language, given the information pre-
sent in the child’s environment. Mathematical or logi-
cal theorems can sometimes be used to prove that pro-
grams with certain formal properties are incapable of
solving this problem. Informally, a grammar-learning
program that works only if the child gets negative
feedback about grammatical errors can be eliminated
from consideration if one can show that the neces-
sary feedback information is absent from the child’s
environment.

The use of these powerful methods has been largely
restricted to the study of vision and language, where
cognitive scientists have developed computational the-
ories. But these methods can be applied to many other
adaptive problems—including ones involving social
behavior—if evolutionary analyses are used to develop
comptuational theories of them. For example, because
Hamilton’s rule provides a standard of good design, it
can be used to evaluate the popular assumption that
““central” processes in humans are general purpose and
content-free (e.g., Fodor, 1983).

Content-free systems are limited to knowing what
can be validly derived by general processes from per-
ceptual information. Imagine, then, a content-free ar-
chitecture situated in an ancestral hunter-gatherer.
When the individual with this architecture sees a rela-
tive, there is nothing in the stimulus array that tells her
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how much she should help that relative. And there
is no consequence that she can observe that tells her
whether, from a fitness point of view, she helped too
much, not enough, or just the right amount, where
“the right amount” is defined by C,,, <r,,, ;B;. Ances-
tral environments lack the information necessary for
inducing this rule ontogenetically (as do modern ones,
for that matter). Even worse, the correct rule cannot be
learned from others: An implication of Hamilton’s rule
is that selection will design circuits that motivate kin to
socialize a child into behaving in ways that are con-
trary to the very rule that the child must induce
(Trivers, 1974).

By developing a computational theory based on
Hamilton’s rule, one can easily see that a content-free
architecture fails even an informal solvability test for
this adaptive problem. And, because Hamilton’s rule
defines a particularly strong selection pressure, the
content-free architecture also fails an evolvability test
(Tooby and Cosmides, 1992; Cosmides and Tooby,
1994).

6. Insights from evolutionary biology can bring functional
organization into clear focus at the cognitive level, but not at the
neurobiological level. Hamilton’s rule immediately sug-
gests hypotheses about the functional organization
of mechanisms described in information-processing
terms, but it tells one very little about the neurobiology
that implements these mechanisms—it cannot be
straightforwardly related to hypotheses about brain
chemistry or neuroanatomy. However, once one knows
the properties of the cognitive mechanisms that solve
this adaptive problem, it should be far easier to dis-
cover the structure of the neural mechanisms that im-
plement them (see Tooby and Cosmides, 1992, and
chapter 78). The key to finding functional organiza-

tion at the neural level is finding functional organiza-
tion at the cognitive level.

Hamilton’s rule is a rich source of constraints from
which to build computational theories of the adaptive
problems associated with kin-directed social behavior.
But it is not unique in this regard. When mathematical
game theory was incorporated into evolutionary analy-
ses, it became clear that natural selection constrains
which kinds of circuits can evolve. For many domains
of human activity, evolutionary biology can be used
to determine what kind of circuits would have been
quickly selected out, and what kind were likely to have
become universal and species-typical. For this reason,
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knowledge of natural selection and of the ancestral
environments in which it operated can be used to
create computational theories of adaptive information-
processing problems. Evolutionary biology provides a
principled way of deciding what domains are likely to
have associated modules® or mental organs—it allows
one to pinpoint adaptive problems that the human
mind must be able to solve with special efficiency, and
it suggests design features that any mechanism capable
of solving these problems must have. Of equal impor-
tance, evolutionary biology provides the definition of
successful processing that is most relevant to the study
of biological information processing systems: It gives
technical content to the concept of function, telling the
psychologist what adaptive goals our cognitive mecha-
nisms must be able to accomplish.

The approach employed by Marr and others—de-
veloping computational theories of a problem defined
in functional terms—has been very successful, espe-
cially in the field of perception, where the function or
goal of successful processing is intuitively obvious. But
for most kinds of adaptive problems (and, therefore, for
most of our cognitive mechanisms), function is far from
obvious, and intuition uninformed by modern biology
is unreliable or misleading. In social cognition, for ex-
ample, what constitutes adaptive or functional reason-
ing is a sophisticated biological problem in itself, and is
not susceptible to impressionistic, ad hoc theorizing.
There exists no domain-general standard for adapta-
tion or successful processing, therefore functionality
must be assessed through reference to evolutionary bi-
ology, adaptive problem by adaptive problem.

Fortunately, over the last 30 years, there have been
rapid advances in the technical theory of adaptation.
There are now a series of sophisticated models of what
constitutes adaptive behavior in different domains of
human life, especially those that involve social behav-
ior. It is therefore possible to develop, out of particular
areas of evolutionary biology, computational theories
of the specialized cognitive abilities that were necessary
for adaptive conduct in humans.

Conclusion

Textbooks in psychology are organized according to a
folk-psychological categorization of mechanisms: at-
tention, memory, reasoning, learning. In contrast,
textbooks in evolutionary biology and behavioral
ecology are organized according to adaptive problems:
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foraging (hunting and gathering), predator avoidance, -
resource competition, fighting, coalitional aggression,
dominance and status, inbreeding avoidance, sexual
attraction, courtship, pair-bond formation, trade-offs
between mating effort and parenting effort, mating
system, sexual conflict, paternity uncertainty and
sexual jealousy, parental investment, discriminative
parental care, reciprocal altruism, kin altruism, coop-
erative hunting, signaling and communication, navi-
gation, habitat selection. Behavioral ecologists and
evolutionary biologists have created a library of sophis-
ticated models of the selection pressures, strategies, and
trade-offs that characterize these adaptive problems.
Which model is applicable for a given species de-
pends on certain key life-history parameters. Findings
from paleoanthropology, hunter-gatherer archeology,
and studies of the ways of life of modern hunter-
gatherer populations locate humans in this theoretical
landscape by filling in the critical parameter values.
Ancestral hominids were savannah-living primates;
omnivores, exposed to a wide variety of plant toxins
and having a sexual division of labor between hunting
and gathering; mammals with altricial young, long pe-
riods of biparental investment in offspring, pair-bonds,
and an extended period of physiologically obligatory
female investment in pregnancy and lactation. They
were a long-lived, low-fecundity species in which vari-
ance in male reproductive success was higher than
variance in female reproductive success. They lived in
small, nomadic, kin-based bands of perhaps 50 to 100;
they would rarely have seen more than 1000 people at
one time; they had little opportunity to store provisions
for the future; they engaged in cooperative hunting,
defense, and aggressive coalitions; they made tools and
engaged in extensive amounts of cooperative recipro-
cation; they were vulnerable to a large variety of para-
sites and pathogens. When these parameters are com-
bined with formal models from evolutionary biology
and behavioral ecology, a reasonably consistent pic-
ture of ancestral life begins to appear (e.g., Tooby and
DeVore, 1987). In this picture, the adaptive problems
posed by social life loom large. Most of these are char-
acterized by strict evolvability constraints, which could
only be satisfied by cognitive programs that are spe-
cialized for reasoning about the social world. This sug-
gests that our evolved mental architecture contains
a large and intricate “faculty” of social cognition
(Brothers, 1990; Cosmides and Tooby, 1992; Fiske,
1992; Jackendoff, 1992). Yet virtually no work in cog-



nitive neuroscience is devoted to looking for dissocia-
tions between different forms of social reasoning, or
between social reasoning and other cognitive functions.
The work on autism as a neurological impairment of a
“theory of mind” module is a notable and very success-
ful exception (e.g., Baron-Cohen, Leslie, and Frith,
1985; Frith, 1989; Leslie, 1987.)

Textbooks in evolutionary biology are organized ac-
cording to adaptive problems because these are the
only problems that selection can build mechanisms for
solving. Textbooks in behavioral ecology are organized
according to adaptive problems because circuits that
are functionally specialized for solving these problems
have been found in species after species. No less should
be true of humans. To find such circuits, however,
cognitive neuroscientists will need the powerful infer-
ential tools that evolutionary biology provides.

Through the computational theory, evolutionary bi-
ology allows the matching of algorithm to adaptive
problem: Evolutionary biology defines information-
processing problems that the mind must be able to
solve, and the task of cognitive neuroscience is to un-
cover the nature of the algorithms that solve them. The
brain’s microcircuitry was designed to implement these
algorithms, so a map of their cognitive structure can be
used to bring order out of chaos at the neural level.

Atheoretical approaches will not suffice—a random
stroll through hypothesis space will not allow one to
distinguish figure from ground in a complex system. To
isolate a functionally integrated mechanism within a
complex system, one needs a theory of what function
that mechanism was designed to perform. Sophisticat-
ed theories of adaptive function are therefore essential
if cognitive neuroscience is to flourish.
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NOTES

1. For example, consider the fact that certain text editing
programs, such as WordStar, have been implemented on
machines with different hardware architectures. The pro-
gram is the same, in the sense that functional relationships
among representations are preserved. The same inputs
produce the same outputs: G always erases a letter, KV
always moves a block, and so on.

2. Had Marr known about the importance of cheating in
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evolutionary analyses of social exchange, he might have
been able to understand other features of the cash register
as well. Most cash registers have anticheating devices: cash
drawers that lock until a new set of prices is punched in,
two rolls of tape that keep track of transactions (one is for
the customer; the other rolls into an inaccessible place in
the cash register, preventing the clerk from altering the
totals to match the amount of cash in the drawer). In a
way akin to the evolutionary process, as more sophisti-
cated technologies become available and cheap, one might
expect the anticheating design features of cash registers to
become more sophisticated as well.

3. We do not mean “modules” in Fodor’s sense; his criteria

do not lay appropriate emphasis on functional organiza-
tion for solving adaptive problems.
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