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ABSTRACT The cognitive neuroscience of central pmccssca is 
currently a mystery. The brain u a vast and complex collec- 
tion offitnctionally integrated circuits. Recognizing that nat- 
ural selection engineen a fit between saucnur and kc t ion  
is the key to isolating thew circuits. Neural circuits were 
designed to solve adaptive problemr If one caa define an 
adaptive problem doody enough, one can see which circuits 
have a structural design that ia capable of solving that 
problan. Evdutiony bidagiur have developed a saia of 
sophiaticatcd mod& of adaptive probiems. Some d there 
models analyze coarrtrabta on the evolution of the cognitive 
procasa that gwcrn social behavior: cooperation, threat, 
courtship, kindirected asairtance, and so on. T h e  fonns 
of social behavior are generated by complex computational 
machinery. To discover the functional architecture of this 
machinery, cognitive neuroscientists will need the powerful 
inferential tooh that evolutionary biology provides, indud- 
ing its welldefined theonca of adaptive function. 

The cognitive scicnccs have bem conducted as if 
D d n  never lived. Their goal k to isolate functionally 
integrated subunits of the brain a d  determine how 
they work. Yet m a t  cognitive scicntiats punue that 
goal without any clear ~mtion of what "function" 
means in biolagy. When a neural circuit is discovered, 
very few researchers ask what its adaptive function is. 
Even fewer use theories of adaptive function as tools 
for discovering heretofore unknown neural systems. In- 

LEDA COSW~OU Department of Psychology, and JOHN 
TOOBY Department of Anthropology, Center for Evolu- 
tionary Psychology, University of California, Santa Barbara, 
Calif. 

deed, many people in our field think that theories of 
adaptive function are an explanatory luxury--f8na 
unEalsifiable speculations that one indulges in at the 
end of a project, after the hard work of figuring out the 
structure of a circuit has been done. 

In this chapter, we will ague that theories of adap  
tive hnction arc not a luxury. They an a necessity, 
crucial to the hturc development of cognitive neuro- 
science. Without them, cognitive neuroscientists will 
not know what to look for and will not know how to 
interpret their results. As a result, they will be unable 
to isolate functionally integrated subunits of the brain. 

Explanation and discooq  in cognitive neuroscience 

[tlrying to understand perception by studying only neurons 
is like vying to understand bid fight by studying only feath- 
m: it just cannot be done. In order to u n d d  bird flight, 
we have to undentand aerodynamics; only then do the s a c -  
turc of feathers and the diffetcnt shapes of birds' wings make 
sense. (Marr, 1982.27) 

David Marr developed a general explanatory system 
for cognitive science that is much cited but rarely ap- 
plied. His three-level system applies to any device that 
processes information-a calculator, a cash register, a 
television, a computer, a brain. It is based on the fol- 
lowing observations: 

1. Information-processing devices are designed to 
solve problems. 

2. They solve problems by virtue of their structure. 
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3. Hence, to explain the structure of a device, one fer in how they represent information, in the proc- 
leeds to know whereby they transform input into output, or both. So 

a. whd problem it was designed to solve, and knowing the goal of a computation does not uniquely 
b. why it was designed to solve that problem and not determine the design of the program that realizes that 

ome other one. goal in the device under consideration. 

[n other words, one must develop a task analysis of the 5. Many different physical systems-from neurons 

problem, or what Marr called a computoriod thmy. in a brain to silicon chips in a computer-can imple- 

Knowing the physical structure of a cognitive device ment the same program.' So knowing the structure of 

and the information-processing program realized by a program does not uniquely determine the properties 

that structure is not enough. For human-made artifacts of the physical system that implements it. Moreover, 

and biological systems, form follows function. The the same physical system can implement many pro- 

physical structure is there because it embodies a set of grams, so knowing the physical properties of a system 

programs; the programs are there because they solve a cannot tell one which programs it implements (table 
79.1) 

$ 

particular problem. A computational theory specifies : 
what that problem is and why there is a device to solve A computational theory defines what problem the i 
it. It specifies the fwction of an information-processing device solves and why it solves it, but it does not specify 4 
device. Marr felt that the computational theory was how this is accomplished; theories about programs and - - : 
the most important and the most neglected level of their physical substrate speclfy how the device solves 
explanation in the cognitive sciences. the problem. Each explanatory level addresses a differ- 

This functional level of explanation has not been ent question. To understand in information-processing 
neglected in the biological science, however, becaw device completely, Marr argued, one needs explanz- 
it is essential for understanding how natural selection tiona on all t h m  levels: computational theory, pra- 
designs organisms (for background, see chapter 78). gramming, and hardware (set table 79.1). 
An organism's phenotypic swucture can be thought of A computational theory of function is more than an 
as a collection of design ftaturcs-of machinu, such as explanatory luxury, however. I t  is an asential tool fbr 
the eye or liver. A dcsign feature can cause its own discovery in the cognitive and neural sciences. Wheth- 
spread by solving adaptive problems--problems, such er a mechanism was designed by natural selection or 
as detecting predators or deroxifying poisoas, that re- 
cur over many generations and whose solution tends to 
promote reproduction. Natural selection is a feedback TABU 79. I 

process that "chooses" among alternative designs on Thrae h i s  at which any mclchinr ca@ng out an information- 

the basis of how well they function. By selecting designs 
proces.siug tad must be &stood 

1 

il 

on the basis of how well they solve adaptive problems, 1. C- tlirorl: * .. 

thL proca en&an a mt ktw- the won of What is the god of the computation. why ia it appmpd- 
ate, and what is the logic of the strategy by which it can be 

a device and its structure. To understand this c a d  oue 
relationship, biologists had to develop a theoretical 2. R*m 
vocabu1w that d i s t inmes  saucnue and How - computational theory be implemented? In 
function. Marr's computational theory is a functional puticul~,  what k the nprucntation for the input and out- 
level of explanation that corresponds roughly to what put, and what k the algorithm for the tradormation? 
biologists refer to aa the "ultimate" or "functional" 3. Hardware implmmmbn: 
explanation of a phenotypic structure. How can the representation and algorithm be realized 

Even though there is a closc causal relationship be- phficallyT 

tween the function of an information-processing device In duh'0~9 b i o l o ~ :  

and its structure, a computational theory of a device Explanations at the level of the computational theory arc 
called ultimate-level explanations. 

does not its structure. This is because Explanntions at the level of mprr.rntation and algorithm, 
there are many ways to skin a cat. More precisely: or at the level of hardware implementation, a n  called proxi- 

4. Many different information-processing programs mote-level explanations. 

can solve the same problem. These programs may dif- From Marr, 1982,25. 
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by the intentional actions of a human engineer, one - 
can count on there being a close causal relationship 
between its structure and its Function. A theory of 
function may not determine a program's structure 
uniquely, but it reduces the number of m b i l i t i u  to 
an empirically manageable number. Task demands 
ndically constrain the range of possible solutions; con- 
sequently, very few cognitive programs are capable of 
solving any given adaptive problem. By developing a 
careful task analysis of an information-processing prob- 
lem, one can vastly simplify the empirid search for 
the cognitive program that solves it. And once that 
program has been identified, it is easy to develop clini- 
cal tests that will target its neural basis. 

It is currently fashionable to think that the findings 
of neuroscience will eventually place strong constraints 
on theory formation at the cognitive level. In this view, 
once we know enough about the properties of neurons, 
neurotransmitters, and cellular development, figuring 
out what cognitive programs the human mind contains 
will become a trivial task. This cannot be me.  Thttt 
are millions of animal species on earth, each with a 
different set of cognitive programs. Ihr smnr basic mural 
tisstu mrbodks aU of these program. Facts about the prop- 
erties of neurons, neurotransmitters, and cellular devel- 
opment cannot tell one which of these milliona of pro- 
gram the human mind contains. 

The cognitive structure of an information-processing 
device "depends more upon the computational prob- 
lems that have to be solved than upon the particular 
hardware in which their solutions are implemented" 
(Marr, 1982, 27). In other words, knowing what and 
whg allows one to generate focused hypotheses about 
how. To figure out how the mind works, cognitive neu- 
roscientists will need to know what problems our cog- 
nitive and neural mechanisms were designed to solve. 

Bdyond intuition: How to build a computational 
tho19 

To illustrate the notion of a computational theory, 
Marr asks us to consider the wh4t and wlg of a cash 
register at a checkout counter in a grocery store. We 
know the what of a cash register: It adds numbers. 
Addition is an operation that maps pairs of numbers 
onto single numben, and it has abstract prop- 
erties, such as commutativity and associativity (table 
79.2). How the addition is accomplished is quite irrele- 
vane Any set of representations and algorithm that 
satkfies these abstract constraints will do. The input to 
the cash register is prices, which are represented by 
numbers. To compute a final b i i  the cash register 
adds these numbers together. That's the what. 

But w h ~  was the cash register designed to add the 

Why w h  registrrs odd 

Rules governing social exchange in a 
Rules defining addition supermarket 

Them is a unique elernens "zem"; Adding If you buy nothing, it should coat you 
zero has no effect: 2 + 0 = 2 now, and buying nothing and 

something should cart the slmt as buying 
just the something. (The rules of zero) 

Commuutivity (2 + 3) * (9 + 2) = 5 The ordn in which go& are ptacnted to 
the cashier should not affect the total. 
(Commutativity) 

Associativity: (2 + 3) + 4 - 2 + (3 + 4) Arranging the goods into two piles and 
paying for each pile separately should not 
affected the total amount you pay. 
(Associativity; the basic operation for 
combining prices) 

Each number has a unique invent that when If you buy an item and then return it Tor a 
added to the number gives zero: refund, your total expenditure should be 
2 +  (-2) 0 0  zero. (Inverses) 

Adapted from Man, 1982,22-23. 
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prices of each item? Why not multiply them together, 
or subtract the price of each item from 100? According 
to Marr, "the reason is that the rules we intuitively feel to 
be appropkzte for combining the individual prices in fact 
define the mathematical operation of addition" (p. 22, 
emphasis added). He formulates these intuitive rules as 
a series of constraints on how prices should be com- 
bined when people exchange money for goods, then 
shows that these constraints map directly onto those 
that define addition (see table 79.2). On this view, cash 
registers were designed to add because addition is the 
mathematical operation that realizes the constraints on 
buying and selling that our intuitions deem appropri- 
ate. Other mathematical operations are inappropriate 
because they violate these intuitions; for example, if the 
cash register substracted each price from 100, the more 
goods you chose the less you would pay-and if you 
chose enough goods, the store would payyou. 

In this particular example, the buck stopped at intu- 
ition. But it shouldn't. Our intuitions are produced 
by the human brain, an information-processing device 
that was designed by the evolutionary process. To  dim 
cover the structure of the brain, one nmls to know what 
problems it was designed to solve and wkg it was de- 
signed to solve those problems n t h v  than some others. 
In other words, one needs to ask the same questions of 
the brain as one would of the cash register. Cognitive 
science is the study of thtdesign of minds, regardless of 
their origin. Cognitive neuroscience is the study of the 
design of minds that were produced by the evolution- 
ary process. Evolution produced the what, and evolu- 
tionary biology is the study of why. Most cognitive 
neuroscientists know this. What they don't yet know is 
that understanding the evolutionary process can bring 
the architecture of the mind into sharper relid: For 
biological systems, the nature of the designer carries 
implications for the nature of the design. 

The brain can process information because it con- 
tains complex neural circuits that are functionally 
organized. The only component of the evolutionary 
process that can build complex structures that are 
functionally organized is natural selection. And the 
only kind of problems that natural selection can build 
complexly organized structures for solving are adap- 
tive problems (Williams, 1966; Dawkins, 1986; Tooby 
and Cosmides, 1990, 1992, this voiume). Bearing this 
in mind, let us consider the source of Marr's intuitions 
about the cash register. Buying food at a grocery store 
is a form of social exchange-cooperation between two 

or more individuals for mutual benefit. The adaptive 
problems that arise when individuals engage in this 
form of cooperation have constituted a long-enduring 
selection pressure on the hominid line. Paleoanthropo- 
logical evidence indicates that social exchange extends 
back at least two million years in the human line, and 
the fact that social exchange exists in some of our pri- 
mate cousins suggests that it may be even more ancient 
than that. I t  is exactly the kind of problem that selec- 
tion can build cognitive mechanisms for solving. 

Social exchange is not a recent cultural invention, 
like writing, yam cultivation, or computer program- 
ming; if it were, one would expect to find evidence of 
its ha;ing one or several points of origin, of its having 
spread by contact, and of its being extremely elabo- 
rated in some cultures and absent in others. But its 
distribution does not fit this pattern. Social exchange is 
both universal and highly elaborated across human 
cultures, presenting itself in many forms: reciprocal 
gifi-giving, food sharing, market pricing, and so on 
(Cosmides and Tooby, 1992; Fike, 1992). It  is an an- 
cient, pervasive, and centrai part of human social life. 

The computational mechanisms that give rise to so- 
cial exchange behavior in a species must satis@ certain 
mf- c ~ l ~ t b & .  Selection cannot construct mech- ' 
anism in any specie-including humans-that qrs-f 

f tematically violate t h e  constraints. In evolutionary 
biology, researchen such as Robert Triven, W. D.: 
Hamilton, and Robert Axelrod have explored con-, 
straints on the evolution of social exchange using game ' 

4 theory, modeling it as a repeated Prisoner's Dilemma. 
Thore analyses have turned up a number of important ? 

features of this adaptive problem, a crucial one being 
that social exchange cannot evolve in a species unless ' 
individuals have some means of detecting individuals 
who cheat and excluding them from future interac- '* 
tions (e.g., Williams & Williams, 1957; Triven, 1971; 
Axelrod and Hamilton, 1981; Axelrod, 1989; Boyd, 
1988). 1 

Behavioral ecologists have used these constraints on 
the evolution of social exchange to build computa- 
tional theories of this adaptive problem-theories of 
what and why. These theories have provided a princi- 
pled basis for generating hypotheses about the pheno- 
typic design of mechanisms that generate social a- 
change in a variety of species. They spotlight deign 
features that any cognitive program capable of solving 
this adaptive problem must have. By cataloging thole 

design features, animal behavior researchers were able 
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look for-and diover-previously unknown as- "maps" of the intricate mechanisms that collectively 
pecu of the psychology of social exchange in species constitute the human mind. Our evolutionarily derived 

chimpanzets, baboons and w e t s  to vampire computational theory of social exchange has been al- 
bats and hermaphroditic coral-reef fish (e.g., Smuts, lowing us to do that. It led us to predict a large number 
1986; de Waal and Luttreu, 1988; F i e r ,  1988; Wi- of design features in advancefeatures that no one 
inson, 1988, 1990). This research strategy has been was looking for and that most of our colleagues thought 

for a very simple reason: Very few cognitive were outlandish. Experimental tests have confirmed 
programs satisfy the evdvability constraints for social the presince of all the design features that have been 
exchange. If a species engages in this behavior (and not tested for so far. Those design features that have been 
all do), then its cognitive architecture must contain one tested and confirmed are listed in table 79.3, along 
of these programs. with the alternative by-product hypotheses that we 

In our own species, social exchange is a universal, and our colleagues have eliminated. So far, no known 
species-typical trait with a long evolutionary history. theory invoking general-purpose cognitive processes 
\Ve have strong and cross-culturally reliable intuitions 'has been able to explain the very precise and unique 
about how this form of cooperation should be con- pattern of data that tests like these have generated. 
ducted, which arise in the absence of any explicit in- The data are best explained by the hypothesis that 
struction (Cosmida and Tooby, 1992; Fike, 1992). In humans reliably develop circuits that are complexly 
developing hi computational theory of the cash regis- specialized for reasoning about reciprocal social inter- 
ter-a tool used in social exchange-David Marr was actions. Parallel lines of investigation indicate that hu- 
consulting these deep human intuitions.' mans have also evolved additional, differently struc- 

From these facts, we can dcduce that the human tured circuits that arc specialized for reasoning about 
cognitive architecture contains prqgrams that satisfy a g p s i v e  threats and protection fiom hazards (e.g., 
the evolvability constraints for social exchange. As cog- Manktelow and Over, 1990; Tooby and Cosmides, 
nitive scientists, we should be able to spedfjt what rule 1989). We are now planning clinical tests to find the 
govern human behavior in thia domain, and why we neural basis for these mechanisms. By studying patient 
humans reliably develop circuitr that embody these populations with autism and other neurological im- 
rules rather than others. In other words, we should be pairments of social cognition, we should be able to see 
able to develop a computational theory of the organic whether dissociations occur along the tiacture lines 
infonnation-processing device that governs d ex- suggested by our various computational theories. (For 
change in humans. a description of the relevant social exchange experi- 

The empirical advantages of using evolutionary bi- ments, see Cosmidcs, 1985,1989; Cosrnida and Tooby, 
ology to develop computational theories of adaptive 1992; Gigercnzer and Hug, 1992.) 
problems had already been amply demonstrated in the S i  Mur, cognitive scientists have become farnil- 
study of animal minds (e.g., Gould, 1982; Kreb and iar with the notion of developing computational the- 
Davies, 1987; G a t e l ,  1990; Real, 1991). We wanted ories to study perception and language, but the notion 
to test its utility for studying the human m i d  A pow- that one can develop computational theories to study 
erful way of doing this would be to use an evolu- the information-processing devices that give rise to 
tionarily derived computational theory to d i i e r  social behavior is still quite alien. Yet some of the 
cognitive mechanisms whose acirtence no one had pre- moat important adaptive problems our ancestors had 
viously suspected. By using evolvabiity constraints, we to solve involved negotiating the social world, and 
developed a computational theory of social exchange some of the best work in evolutionary biology is de- 
Cosmides, 1985; Cosmides and Tooby, 1989). It sug- voted to analyzing constraints on the evolution of 

4 ~ t d  that the cognitive processes that govern human mechanisms that solve these problems. There are many 
reasoning might have a number of design features spe- reasons for the neglect of these topics in the study of 
cialized for reasoning about social exchange-what humans, but the primary one is that cognitive scientists 
Gallistel (this volume; also Rozin, 1976) calls adaptive have been relying on their intuitions for hypotheses 
sPtciolizationr. rather than asking themselves what kind of problems 

The goal of our research is to recover, out of care- the mind was designed to solve. Evolutionary biology 
fully designed experimental studies, high-resolution addresses that question. Consequently, evolutionary 



Reasoning about social cxthangu: Evidac# of sptcial dssign* 

The following design features were predicted A number of by-product hypotheses were 
and found: empirically ciiminated. It was shown thac 

The algorithms governing reasoning about Familiarity cannot explain the social contract 
social contracts operate even in unfamiliar effect. 
situations. 

The ddinition of cheating that these It is not the CIK that social contract content 
algorithms embody depends on one's merely fadlitates the application of the 
perspective. rules of inference of the propositional 

calculus. 
They are just as good at computing the Social contract content does not merely 

cast-benefit representation of a social "afford" dear thinking. 
contract from the penpective of one party 
as fiom the penpective of another. 

They embody implicational procedures Pmnission schema theory cannot explain the 
specified by the computational theory. social contract effect; in other words, 

application of a generalized deontic logic 
cannot explain the results. 

They include inference procedures specialized It is not the case that any problem involving 
for cheater detection. payoffs will elicit the detection of 

violations. 
Thdr chepta-detectioa procedurrs cannot 

detect violations o f 4  contracts that do 
not correspond to cheating. 

They do not include altruirt detection 
procedures. 

They cannot operate so or to detect chaten 
unles the rule brrs been assigned the met- 
benefit npresentation of a sacid contract 

- - - -- 

*To show that an aspect of the phenotype is an adaptation to perform a particular function, 
one muct show that it is particularly well designed for performing that hnction, and that it 
cannot be better explained as a by-product of some other adaptation or physical law. 

biology places important constraints on theory forma- 
tion in cognitive neuroscience, constraints from which 
one. can build computational theories of adaptive idor- 
mation-processing problems. 

Organism design 

Knowing that the circuitry of the human mind was 
designed by the evolutionary process tells us some- 
thing centrally illuminating.- that, aside from those 
properties acquired by chance or imposed by engi- 
neering constraints, the mind consists of a set of 
information-processing circuits that were designed by 
natural selection to solve those adaptive problems that 
our hunter-gatherer ancestors faced generation after 
generation (see chapter 78). The better we understand 

the evolutionary pmcm, adaptive problems, and an- 
cestral life, the more intelligently we can explore and 
map the intricacies of the human mind. 

Figuring out the svucture of an organism is an exer- 
cise in rcvcne engineering, the field of evolutionary 
biology summarizes our knowledge of the engineering 
principles that govern the design of organisms. Taken 
together, these principles constitute an orgcudnn design 
theory. A major activity of evolutionary biologists is the 
exploration and definition of adaptive problems. By 
combining results derived from mathematical model- 
ing, comparative studies, behavioral ecology, paieoan- 
thropology, and other fields, evolutionary biologists try 
to identify what problems the mind was designed to 
solve and why it was designed to solve those problems 
rather than some other ones. In other words, they ex- 



piore exactly thost questions that Marr argued were 
for developing computational theories of 

adaptive information-processing problems. 
Computational theories address what and why, but 

because there are multiple ways of achieving any solu- 
tion, they are not sufficient to specie how. But the 
more closely one can define what and why-the more 
one can constrain what would count as a solution-the 
more clearly we can see which hypotheses about mech- 
anisms are viable and which are not. The more con- 
s t r a in~  one can discover, the more the field of possible 
solutions is narrowed, and the more one can concen- 
trate empirical efforts on diirirninating between via- 
ble hvwtheses. . 

Natural selection is capable of producing only cer- 
tain kinds of designs: designs that have promoted their 
own reproduction in past environments. I t  constrains 
what counts as an adaptive problem, and therefore 
narrows the field of possible solutions. In evolutionary 
analyses, cognitive scientists will d i i o v a  a rich and 
surprisingly powertul source of constraints ftom which 
precise computational theories can be built. Indeed, 
these analyses provide the only source of constraints for 
the cognitive pmccsscs that govern human social be- 
havior. Table 79.4 lists fimilies of constraints that cog- 
nitive scientists could be using, but arc not. 

We would like to illustrate this point with an 
extended example involving social behavior. Consider 

TABLE 79.4 
Evolutionar~ b i o l o ~  pooidrs conrtraiats from whith computational 

thaonbs of aakptive information-poccssing p r o b h  can be built 

To build a computational theory, one must answer two 
questions: 
1. What is the adaptive problem? 
2. What information would have been available in ancestral 
environments for solving it? 

Some sources of constrain& 

1 .  More precise definition of Marr's "god" of processing 
that is appropriate to evolved (as opptxcd to artificial) 
information-procesing systems 
2. Game-theoretic models of the dynamics of natural selec- 
tion (e.g., kin selection, Prisoner's Diemma, and coopera- 
ti~n-~articulad~ useful for analysis of cognitive mecha- 
nisms responsible for social behavior) 
3. Evolvability constraints. Can a design with properties X, 
Y, and Z evolve, or would it have been selected out by 
alternative desigru with different properties? (i.e., does the 
design represent an evolutionarily stable strategy?-related 
to point 2) 
4. Hunter-gatherer studies and palcoanthrop01ogy-~0un:e 
of intbrmation about the environmental background againat 
which our cognitive architecture evolved (Information that 
is present now may not have been pruent then, and vice 
v-1 
5. Studies of the algorithm and r e p ~ t a t i o n r  whereby 
other animals solve the same adaptive problem (These will 
sometimes be the same, sometimes diffkremt) 

Hamilton's rule, which describes the selection pressures 
operating on mechanisms that generate behaviors that 
have a reproductive impact on an organism and its 
kin (Hamilton, 1964). The rule defines (in part) what 
counts as biologically successful outcomes in these 
kinds of situations. These outcomes often cannot be 
reached unless specific information is obtained and 
p r o c d  by the organism. 

In the simplest case of two individuals, a mechanism 
that produca acts of assistance has an evolutionary 
advantage w a  altcmative mechanisms if it reliably 
causes individual i to help relative j whtvencver Ci < 
r,&. In this quation, C;: is the cost to i of rendering an 
act of assistance to j, measured in terms of foregone 
reproduction; B j  is the benefit to j of receiving that act 
of assistance, measured in terms of enhanced reproduc- 
tion; and ti, is the probability that a randomly sampled 
gene will be present at the same locus in the relative 
due to joint inheritance from a common ancestor. 

Other things being q u d ,  the more closely the be- 
haviors produced by cognitive mechanisms confonn to 

Hamilton's rule, the more strongly those mechanisms 
will be selected for. A design feature that systematically 
caused an individual to help more than this-or less 
than thii-would be selected aga.instt 

This means that the cognitive programs of an organ- 
ism that confm benefits on kin cannot violate Hamil- 
ton's rule. Cognitive programs that systematically vio- 
late this constraint cannot be selected for. Cognitive 
programs that satisfy this constraint can be selected for. 
A species may lack the abiity to confer benefits on kin, 
but if it has such an ability, then it has it by virtue 
of cognitive programs that produce behavior that re- 
spects this constraint. Hamilton's rule is completely 
general: I t  is inherent in the dynamics of natural selec- 
tion, true of any species on any planet at  any time. One 
can call theoretical constraints of this kind molvability 
conrtsCU:nts; they specify the class of mechanisms that 
can, in principle, evolve (Tooby and Cosmides, 1992; 
Cosmides and Tooby, 1994). The evolvability con- 



straints for one adaptive problem usually differ from formulated, behavioral ecologists began to discover ' 

those for another. psychological mechanisms that embodied it in many 
Under many ecological conditions, this selection nonhuman animals (Krebs and Davies, 1987): Un- 

pressure defines an information-processing problem for guided empiricism is unlikely to uncover a mechanism 
whose solution organisms w i l b  selected to evolve that is well designed to solve a problem of this kind. 
mechanisms. Hamilton's rule answers the three ques- 2. By using the &$mtum of  an lulaptive p r o b h ,  one can 
tions that Marr said a computational theory of an e d y  generate hlpotheses about the &sign features of i n f m -  
information-processing problem should answer. It tion-p'ocasing mechanisms, even wha these mechanisms are 
identifies the goal of a computation, why it is relevant, designed to produce social behazk.  Knowing the definition 
and the logic of the strategy by which it can be carried of the problem allows one to break it down into cogni- 
out (Marr, 1982,25; see table 79.1). tive subtasks, such as kin recognition, kin categoriza- 

Using this description of an adaptive problem as a tion, and cwt-benefit estimation, in the same way that 
starting point, one can immediately begin to define knowing that the adaptive function of the visual system 
the cognitive subtasks that would have to be addressed is scene analysis allows one to identifjr subtasb such as 
by any set of mechanisms capable of producing be- depth perception and color constancy. 
havior that conforms to this rule. What information- 3. Knowing the ancestral conditionr under which a spctirJ 
processing mechanisms evolved to reliably idenafy rel- evolved can suggc~tjhatful hypotheses about &sign features of 
atives, for example? What criteria and procedures to the cognitive adaptations that solve tAc problem. For example, 
do they embody? That is, do these mechanisms define the key task in developing a computational theory of 
an individual as a sibling if that individual (a) was kin identification is identifying cues that would have 
nursed by the same female who nursed you, (b) resided been reliably correlated with Linrhip in ancestral envi- 
in close contact with you during your first t h m  yean ronments without also being corrdatad with lack of 
of life, or (c) looh or smells similar to your mother, W p .  If t h m  arc no such cues, then a kin identifica- 
within a certain m o r  toleance? What kind of infor- tion mechanism cannot be sckted 6t. If thae are 
mation is processed to estimate rk,, the degree of re- several pcmible cues, then empirid tats arc the only 
latedness? Under ancestral conditions, did siblings and way to determine which one(s) the system USCB. Even 
cousins corcside, such that one might expect the evo- so, considering what kind of infbrmation waa available 
lution of mechanisms that diiriminate between the simplifies the task immensely: Coresidence is a reliable 
two? After all, ri,all,ib = 41i,~ntcou"m. What kind of cue of sibhood in some species, but other cues would 
mechanisms would have been capable of estimating the have to be picked up and processed in a species in 
magnitudes of the consequences of specific actions on which siblings and cousins coreside. 
one's own and on others' reproduction? (For example, 4. Knowing about ~cat t ra l  con& can help rma d 
the estimation procedures of vampire bats could be tied concgtuuf wrong turn in the interpretation of data The cue 
directly to volume of regurgitated blood fed to a rela- "looks like me" is not a good candidate cue for kin 
tive, as this is the only form of help they give.) What identification, because our hunter-gatherer ancestors 
kinds of decision rules combine thore various pieces did not have mirrors. It  thmtbre would have km 
of information to produce behavior that conforms to difficult to form an accurate template of one's own fice 
Hamilton's rule? And so on. for comparison. If one were to find data suggcating that 
This example highlights smral points about the this cue is used, one should consider conducting tests to 

connection betwem evolutionary biology and the cog- see whether this is an incidental correlation caused by 
nitive sciences: the use of a more likely cue, such as "looks like my 

mother." 
1. Knowledge dfawnfrom moluiiorurr) biology can be used 5. A c o ~ d  theory builtfiom awlu- c o n ~ i r t d ~  

, to discover previowly unknown fwt ional  orguni@ion in our can provide a st&d ofgood design. A design for solving 
cognitive architecture. Hamilton's rule is not intuitively this adaptive problem can be evaluated by determin- 
obvious; researchers would not look for cognitive ing how closely it produces behavior that tracks Ham- 
mechanisms that are well designed for producing be- ilton's rule. Standards of good design arc an essential 
havior that conforms to this rule unless they had al- tool for cognitive scientists becaw they allow one ta 
ready heard of it. After Hamilton's rule had been determine whether a hypothesized mechanism is capa. 



ble of solving the adaptive problem in question and to how much she should help that relative. And there 
decide whether that mechanism would have done a is no consequence that she can observe that tells her 
better job under ancestral conditions than alternative whether, from a fitness point of view, she helped too' 
designs. much, not enough, or just the right amount, where 

Some programs are not capable of solving a particu- "the right amount" is defined by C,#, < rr l rd4 .  Ances- 
lar problem. Hypotheses that propose such programs tral environments lack the information necessary for 
should be eliminated from consideration. Cognitive sci- inducing this rule ontogenetically (as do modern ones, 
entists have developed powerful methods for determin- for that matter). Even worse, the correct rule cannot be 
ing whether a program is capable of solving a problem, learned from others: An implication of Hamilton's rule 
but these methods can be used only if one has a de- is that selection will design circuits that motivate kin to 
tailed computational theory d e h h g  what the problun socialize a chid into behaving in ways that are con- 
is. Two particularly powerM methods are as follows: trary to the very rule that the child must induce 

a. CmpUhhond modsling. o n e  can implement the (Trivers, 1974). 
program on a computer, run the program, and see By developing a computational theory based on 
what happens. Hamilton's rule, one can easily see that a content-Gee 

b. Solvability analysis. Theoretical analyses can some- architecture fails even an informal solvability test for 
times reveal that a proposed program is incapable of this adaptive problem. And, because Hamilton's rule 
solving a problem. These analyses can be formal or defines a particularly strong selection pressure, the 
informal. The learnability analyses wed in develop content-Gee architecture also fails an evolvabiity test 
mental psycholinguistics are of both varieties (Pinker, (Tooby and Cosmides, 1992; Cosrnides and Tooby, 
1979, 1984; Wexler and Culicover, 1980). The prob- 1994). 
lem in question is how a child learns the grammar of 6. Iwghtsfrorn cool- bwlog can bmgjiautud 
hi or her native language, given the information pre- o r g ~ ~  into clam fm at the cogniEior M, but not at h 
sent in the child's environment. Mathematical or lo@- namWo@al M. Hamilton's rule immediately sug- 
cal theorems can sometimes be used to prove that pro- gests hypotheses about the hnctional organization 
gram with certain formal properties arc incapable of of mechanisms described in information-processing 
solving this problem. Informally, a grammar-learning terms, but it tells one vay little about the neurobiology 
program that works only if the child gets negative that implements these mechanisms--it cannot be 
feedback about grammatical erron can be eliminated staighdowardly related to hypotheses about brain 
from consideration if one can show that the neces- chemistry or neuroanatomy. However, once one knows 
sary feedback information is absent from the child's the properties of the cognitive mechanisms that solve 
environment. this adaptive problem, it should be tk easier to di- 

The use of these powerful methods has been largely cover the structure of the neural mechanisms that im- 
restricted to the study of vision and language, where plement them (see Tooby and Cosmidu, 1992, and 
cognitive scientists have devdoped computational the- chapter 78). The key to finding functional organiza- 
ones. But these methods can be applied to many other tion at the neural level is finding functional organiza- 
adaptive problems-including ones involving social tion at the cognitive level. 
behavior-if evolutionary analysa arc used to develop 
comptuationd theories d than. For example, because Hamilton's rule is a rich source of constraints from 
Hamilton's rule providu a standard of good design, it which to build computational theories of the adaptive 
can be used to evaluate the popular assumption that problems associated with kin-directed social behavior. 
"central" processes in humans arc general purpose and But it is not unique in this regard. When mathematical 
content-free (e.g., Fodor, 1983). game theory was incorporated into evolutionary analy- 

content-free systems are limited to knowing what ses, it became clear that natural selection constrains 
can be validly derived by general proccscs from per- which kinds of circuits can evolve. For many domains 
ceptual information. Imagine, then, a content-fm ar- of human activity, evolutionary biology can be used 
chitecture situated in an ancestral hunter-gatherer. to determine what kind of circuits would have been 
When the individual with this architecture sees a rela- quickly selected out, and what kind were likely to have 
tive, there is nothing in the stimulus array that tells her become universal and species-typical. For this reason, 



knowledge of natural selection and of the ancestral foraging (hunting and gathering), predator avoidance, 
environments in which it operated can be used to resource competition, fighting, coalitional aggression, 
create computational theories of adaptive information- dominance and status, inbreeding avoidance, sexual 
processing problems. Evolutionary biology provides a attraction, courtship, pair-bond formation, tradesffs 
principled way of deciding what domains are likely to between mating effort and parenting effort, mating 
have associated modulesa or mental organs-it allows system, sexual conflict, paternity uncertainty and 
one to pinpoint adaptive problems that the human sexual jealousy, parental investment, discriminative 
mind must be able to solve with special efficiency, and parental care, reciprocal altruism, kin altruism, coop- 
it suggests design features that any mechanism capable erative hunting, signaling and communication, navi- 
of solving these problems must have. Of q u a l  impor- gation, habitat selection. Behavioral ecologists and 
tance, evolutionary biology provides the definition of evolutionary biologists have created a library ofsophii 
successful processing that is mosi relevant to the study ticated models of the selection pressures, strategies, and 
of biological information processing systems It  gives trade-offs that characterize these adaptive problems. 
technical content to the concept of function, telling the Which modd is applicable for a given species de- 
psychologist what adaptive goals our cognitive mecha- pends on cmain key life-history parameters. Findings 
nisms must be able to accomplish. from paleoanthropology, hunter-gatherer archeology, 

The approach employed by Marr and others-de- and studies of the ways of life of modern hunter- 
veloping computational theories of a problem defined gatherer populations locate humans in this theoretical 
in functional terms-has been very successful, espe- landscape by filling in the critical parameter values. 
cially in the field of perception, whew the function or Ancestral hominids were savannah-living primates; 
goal of successful processing is intuitively obvious. But omnivores, exposed to a wide variety of plant toxins 
for most kinds of adaptive problems (and, therefore, for and having a scxual division of labor between hunting 
most of our cognitive mechanisms), hnction is far fiom and gathering; mammala with altricial young, long pt- 
obvious, and intuition uninformed by modern biology nods of biparental investment in oSpring, pair-bonds, 
is unreliable or misleading. In social cognition, for ex- and an extended period of physi01ogidy obligatory 
ample, what constitutes adaptive or functional reason- female investment in pregnancy and lactation. They 
ing is a sophisticated biological problem in it& and is were a long-lived, low-fecundity spcdca in which vari- 
not susceptible to impressionistic, ad hoc theorizing. ance in male reproductive success was higher than 
There exists no domain-peal  standard for adapta- variance in female reproductive success. They lived in 
tion or successhl processing; therefore hctionality small, nomadic, kin-based bands of perhaps 50 to 100; 
must be assessed through reference to evolutionary bi- they would rarely have seen more than 1000 people at 
ology, adaptive problem by adaptive problem. one time; they had little opportunity to store provisions 

Fortunately, over the last 30 years, t h m  have been for the hture; they engaged in cooperative hunting, 
rapid advances in the technical theory of adaptation. defense, and aggressive coalitiow, they made tools and 
There are now a series of sophisticated models of what engaged in extensive amounts of cooperative recipro- 
constitutes adaptive behavior in different domains of cation; they w m  vulnerable to a large variety of para- 
human life, especially those that involve social behav- site and pathogens. When these parameters are com- 
ior. It is therefore possible to develop, out of parthhr bined with formal models fiom evolutionary biology 
areas of evolutionary biology, computational theories and behavioral ecology, a reasonably consistent pic- 
of the specialized cognitive abilities that wwm n c c c s q  ture of ancestral life begins to appear (e.g., Tooby and 
for adaptive conduct in humans. DeVore, 1987). In this picture, the adaptive problems 

posed by social life loom large. Most of these arc char- 
Conciusion acterized by strict evolvability constraints, which could 

only be satisfied by cognitive programs that are spe- 
Textbooks in psychology are organized according to a cialized for reasoning about the social world. This sug- 
folk-psychological categorization of mechanisms: at- gests that our evolved mental architecture contains 
tention, memory, reasoning, learning. In contrast, a large and intricate "faculty" of social cognition 
textbooks in evolutionary biology and behavioral (Brothers, 1990; Cosmida and Tooby, 1992; Fiske, 
ecology are organized according to adaptive problems: 1992; Jackendoff, 1992). Yet virtually no work in cog- 



nitive neuroscience is devoted to looking for dissocia- 
tions between different forms of social reasoning, or 
between social reasoning and other cognitive functions. 
The work on autism as a neurological impairment of a 
"theory of mind" module is a notable and very success- 
ful exception (e.g., Baron-Cohen, Leslie, and Frith, 
1985; Frith, 1989; Leslie, 1987.) 

Textbooks in evolutionary biology are organized ac- 
cording to adaptive problems because these are the 
only problems that selection can build mechanisms for 
solving. Textbooks in behavioral ecology are organized 
according to adaptive problems because circuits that 
are hnctionally specialized for solving these problems 
have bem found in species after species. No less should 
be true of humans. To find such circuits, however, 
cognitive neuroscientists will need the powerfbl infer- 
ential tools that evolutionary biology provides. 

Through the computational theory, evolutionary bi- 
ology allows the matching of algorithm to adaptive 
problem: Evolutionary biology defines information- 
procasing problems that the mind must be able to 
solve, and the task of cognitive n d e n c e  is to un- 
cover the nature of the algorithms that solve them. The 
brain's micmcircuiay war designed to implement these 
algorithms, so a map dtheir cognitive structure can be 
used to bring order out of & at the n d  level. 

Atheoretical approaches will not suffice-a random 
stroll through hypothesis space will not allow one to 
distinguish figure from ground in a complex system. To 
isolate a functionally integrated mechanism within a 
complex system, one needs a theory of what function 
that mechanism was designed to perform. Sophisticat- 
ed theories of adaptive function are therefore essential 
if cognitive neuroscience is to flourish. 
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NOTES 

1. For example, consider the fact that certain text editing 
programs, such as Wordstar, have been implemented on 
machines with different hardware architectures. The pro- 
gram is the same, in the sense that functional relationships 
among representations are p ~ ~ ~ e d .  The same inputs 
produce the same outputs: -G always erase a letter, KV 
always moves a block, and so on. 

2. Had Marr known about ihe importance of cheating in 

evolutionary analyses of social exchange, he might have 
been able to understand other features of the cash register 
as well. Most cash registers have anticheating devices: cash 
drawers *at lock until a new set of prices is punched in, 
two r o b  of tape that keep track of transactions (one is for 
the customer; the other rolls into an inaccessible place in 
the cash register, preventing the clerk from altering the 
totals to match the amount of cash in the drawer). In a 
way akin to the evolutionary process, as more sophisti- 
cated technologies become available and cheap, one might 
expect the anticheating design ftatures of cash registen to 
become more sophisticated as well. 

3. We do not mean "modules" in Fodor's sense; his criteria 
do not lay appropriate emphasis on hnctional organiza- 
tion for solving adaptive problems. 
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