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utility theory, or, when choosing among bundles of goods, 
the axiom of transitivity (GARP).

In this research tradition, reasoning errors are defined 
as having occurred whenever  human judgment departs 
from what  these normative theories dictate. In their sem-
inal studies of judgment  under uncertainty, Kahneman 
and Tversky (1982) articulated this standard: “The pres-
ence of an error in judgment is demonstrated by com-
paring  people’s responses  either with an established fact 
(e.g., that the two lines are equal in length) or with an 
accepted rule of arithmetic, logic, or statistics” (p. 123).

When cognitive per for mance was assessed by  these 
normative standards, the rationality of  human reason-
ing, judgment, and decision making was found wanting. 
Psychologists found systematic errors in deductive rea-
soning and hypothesis testing, violations of probability 
theory, preference reversals, and “excess” altruism.  These 
“errors”  were attributed to a flotilla of heuristics, biases, 
and emotions— cognitive pro cesses thought to be fast, 
automatic, unconscious, emotional, associative, and/or 
stereotypic. This heterogeneous collection of pro cesses was 
called “System 1.” Rational thinking was attributed to “Sys-
tem 2”: slow, effortful, conscious deliberations that carry 
out calculations and logical inferences (Kahneman, 2011).

This research program has produced a formidable par-
adox. Reviews of  human reasoning research are custom-
arily presented as lengthy cata logs of errors, fallacies, 
biases, heuristics, and emotions. Textbooks or ga nize 
their discussions around the seemingly endless ways in 
which  human reasoning and decision making depart 
from the normative ideals of rationality used in science, 
mathe matics, economics, and philosophy. Yet evolved 
reasoning systems— human and nonhuman minds 
alike— negotiate the complex natu ral tasks of their world 
with a level of operational success far surpassing that of 
the most sophisticated existing artificial intelligence (AI) 
systems. It is trivial to equip AI systems with algorithms 
that implement statistical decision theories, inferences 
of first- order logic, and other formal methods of rational 

Summary

 Human cognition is often compared— unfavorably—to 
normative theories of rationality from mathe matics, 
logic, economics, or philosophy. But what justifies  these 
normative theories as the proper standard for assessing 
the rationality of an evolved computational system? The 
adaptationist program in evolutionary biology provides a 
meta- normative theory of rationality that is appropriate 
for evolved organisms. The functional design of our cog-
nitive architecture was built by natu ral se lection, to solve 
information- processing prob lems that are strange, exact, 
and nonintuitive. Theories of adaptive function— task 
analyses of  these prob lems— provide normative standards 
of good design for assessing the rationality of  human cog-
nition. With five case studies, we show how this approach 
can reveal sophisticated cognitive mechanisms that would 
other wise remain undetected. At the same time,  these 
cases illustrate pitfalls of studying reasoning and choice 
without reference to the ancestral prob lems and environ-
ments that selected for their design.

1. The Paradox of  Human Reasoning

How the mind works can be illuminated by comparing 
 human cognition to standards of good design specified 
by a normative theory. But which standards are appro-
priate for an evolved organism? What counts as a ratio-
nal inference or choice for animals like us, whose minds 
 were designed by natu ral se lection?

The first normative theories used in cognitive psy-
chol ogy  were  those deemed rational by mathematicians, 
scientists, economists, and phi los o phers. Deductive and 
inductive reasoning  were compared to standards of ratio-
nality drawn from first- order logic, Bayes’ theorem, or 
statistical princi ples. The manner in which  people evalu-
ate hypotheses was compared to Popper’s standard: look 
for violations, not confirmation. Decision making was 
compared to Neyman– Pearson decision theory, expected 
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mathematicians, economists, and phi los o phers is use-
ful for solving the evolutionarily novel prob lems cre-
ated by  these conditions, such as producing scientific 
knowledge, understanding market dynamics, and, per-
haps, fostering cooperation in the modern world of mass 
socie ties and global contact. But what justifies privileg-
ing methods developed for  these modern goals as the 
metric against which  human rationality is mea sured?

Nothing. From an evolutionary perspective,  these are 
the wrong goals against which to mea sure  human ratio-
nality,  because they played no causal role in selecting for 
the design of the mind. To decide  whether a mechanism 
of  human reasoning or decision making is rational— 
whether it is well engineered for producing a goal or 
outcome—we need to know what adaptive prob lem that 
mechanism was designed (by natu ral se lection) to solve, 
and what kind of information was available for solving it 
in the environments that selected for its design.

3. The Adaptationist Program in Evolutionary  
Biology Provides a Sound Meta- Normative  
Theory of Rationality

From the molecular machinery of a single cell to the 
information- processing architecture of the  human visual 
system, the most sophisticated engineering on Earth is 
found in organisms and was built by natu ral se lection.

Organisms are composed of many machines: sys-
tems or ga nized to solve a prob lem.  These systems evolved 
to solve prob lems in ways that improved the ability of the 
organism’s ancestors to produce offspring.  Every piece of 
organic machinery— the ret ina, the heart, the lungs— 
acquired its intricate functional design over deep time, 
as a downstream consequence of the fact that organisms 
reproduce themselves.

3.1 Natu ral Se lection Retains Designs That Promote 
Their Own Reproduction
When individuals reproduce, replicas of their organic 
machinery develop in their offspring. But replication 
is not error- free: chance mutations introduce changes 
into the design of organic machines, altering their fea-
tures.  These entropic changes usually disrupt the effi-
ciency with which this machinery solves prob lems, 
thus interfering with the mutant offspring’s ability to 
produce offspring of its own.  Because individuals with 
the newly modified, but now defective, design produce 
fewer offspring, on average, than  those with the (more 
efficient) standard design, the defective design eventu-
ally dis appears from the population— a case of negative 
feedback.

inference. They can search vast prob lem spaces in sec-
onds, store massive databases for analy sis, and perform 
lightning calculations. But organisms perform better than 
 these computational systems on virtually  every natu ral 
inferential prob lem that has been carefully investigated— 
the induction of grammar and word meanings, speech 
perception, vision, color constancy, recognizing objects 
and making inferences about their interactions, and infer-
ring the beliefs, desires, and be hav ior of other  people, to 
name a few.

What is the resolution to this paradox? From the per-
spective of evolutionary biology, the prob lem is not that 
our thinking is irrational. The prob lem is how psycholo-
gists have been defining rationality and testing for its 
presence.

2. A Meta- Normative Theory of Rationality

Let us take one step back and ask a more fundamental 
question. Why identify rationality with adherence to 
normative theories from logic, mathe matics, economics, 
and philosophy? What normative theory justifies the 
choice of  these par tic u lar normative theories?

In common parlance, a choice, pro cess, or be hav ior is 
considered rational when it is well designed for achiev-
ing a goal, and irrational when poorly designed for that 
function. It would be irrational to eat charcoal instead of 
fruit to sate hunger (but rational if you had just ingested a 
poison); it would be irrational to travel to a new location 
by randomly zigzagging instead of following a straight- 
line path (but rational if you are evading a predator); it 
would be irrational to converse out loud while alone (but 
rational if you are rehearsing a role).  There is no goal- 
independent definition of what counts as rational.

The specialized (and historically recent) tools of sci-
entists, mathematicians, economists, and phi los o phers 
 were developed for very specific goals: producing knowl-
edge, understanding choice, and guiding be hav ior in 
mass socie ties. From the 1400s to the pre sent, increas-
ing literacy, more reliable data storage technologies, 
and the decreasing cost of communication and travel 
have changed the world beyond anything known by 
our hunter– gatherer ancestors.  Because of  these devel-
opments, hypotheses and data became more widely 
shared, debated, vetted, and stored, enabling the cul-
tural accumulation of knowledge in ever- larger popula-
tions; markets arose in which millions of anonymous 
individuals cooperated in complex networks;  people 
from locations with dif fer ent moral norms  were brought 
into contact, in ever- widening circles of interaction. 
Applying standards of rationality created by scientists, 
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features accumulate that fit together to form an inte-
grated structure or device that is well engineered to 
solve that adaptive prob lem. Such a structure or device 
is called an adaptation. An adaptation may have many 
beneficial effects, but solving the adaptive prob lem that 
selected for its design is its function. The function of 
the heart is to pump blood; the function of the liver 
is to detoxify poisons; the function of the ret ina is to 
detect photons and transduce them into neural signals 
for vision. Adaptive prob lems that required informa-
tion pro cessing for their solutions selected for neural 
circuitry or ga nized to compute  these solutions: compu-
tational adaptations.

Adaptationism is the name of the research program that 
explores how natu ral se lection functionally organizes the 
designs of organisms. Adaptationists start with a careful 
analy sis of an adaptive prob lem— including information 
that would have been available in ancestral environments 
for solving that prob lem. A careful task analy sis of an adap
tive prob lem serves as a normative theory of good design: it 
identifies the prob lem, allowing one to see what counts as 
a good solution to it.  Because a computational adaptation 
should be composed of algorithms and repre sen ta tions 
that are well engineered for solving the prob lem that 
selected for its design, a good theory of adaptive function 
suggests hypotheses about the design of the mind.  These 
can be tested empirically, revealing computational opera-
tions that  were previously unknown.

The adaptationist perspective provides principled, non-
arbitrary criteria for judging rationality. If a choice, pro-
cess, or be hav ior is rational when it is well designed for 
achieving a goal, then a computational adaptation that 
generates inferences or choices is rational when its features 
are well tailored for solving an adaptive prob lem faced by 
the hunter– gatherers from whom we are descended.

The study of reasoning and choice looks very dif fer ent 
when viewed from this perspective. Many fallacies dis-
appear, and well- designed reasoning appears, when cog-
nitive per for mance is compared to theories of adaptive 
function: normative standards of good design derived 
from evolutionary biology, behavioral ecol ogy (of hunter– 
gatherers, nonhuman primates, and other animals), and 
studies of ancestral environments (from paleoanthropol-
ogy, archaeology, physics, geology, botany, zoology, and 
other sources). Using five case studies of reasoning and 
choice, we illustrate pitfalls that arise from the failure 
to apply adaptationist thinking. Cases 3–5 tap theories 
of adaptive function that are normative in evolutionary 
biology but have no counterpart in traditional normative 
theories.

Occasionally, a mutation  will improve a machine’s 
operation in a way that promotes the reproduction of indi-
viduals with that mutation— and, therefore, the reproduc-
tion of that design. Such improved designs (by definition) 
cause their own increasing frequency in the population— a 
case of positive feedback. This increase continues  until 
(usually) the modified design out- reproduces, and thereby 
replaces, all alternative designs in the population, lead-
ing to a new species- standard design. The population-  or 
species- standard design has taken a step “uphill”  toward a 
greater degree of functional organ ization for reproduction 
than it had previously.

Over the long run, down chains of descent, this feed-
back cycle— natu ral se lection— pushes designs through 
state- space  toward increasingly well- engineered func-
tional arrangements.  These arrangements are functional in 
a specific sense: the ele ments are well or ga nized to cause 
their own reproduction in the environment in which the 
species evolved.

3.2 Adaptive Prob lems and Evolved Solutions
Enduring conditions in the world that create reproduc-
tive opportunities or obstacles constitute adaptive prob
lems. Examples include the presence of predators, the 
possibility of sharing food to pool foraging risk, or the 
existence of a cognitive mechanism that could be repur-
posed for more efficient foraging. Enduring relation-
ships of this kind constitute reproductive opportunities 
or obstacles in the following sense: if the organism had 
a new property that interacted with  these conditions 
in just the right way, then this property would cause 
individuals who have it to produce more offspring that 
live to reproductive maturity, relative to  those with 
alternative designs.  These reproductive opportunities 
and obstacles can be thought of as prob lems. A property 
is a solution to such a prob lem when it allows organ-
isms with this property to take advantage of prevailing 
conditions, where “advantage” means a reproductive 
advantage.

Adaptive prob lems have two defining characteristics. 
First, they are conditions or cause- and- effect relationships 
that many or most individual ancestors encountered, 
reappearing again and again during the evolutionary his-
tory of the species. Second, they are that subset of endur-
ing relationships that could, in princi ple, be exploited by 
some new property of an organism to increase its repro-
duction or the reproduction of its relatives (who have a 
high probability of having inherited the same mutation).

An enduring adaptive prob lem constantly selects for 
design features that promote the solution to the prob-
lem. Over evolutionary time, more and more design 
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making probability judgments can safely ignore normal-
ized data about base rates (as  people famously do) if they 
are designed to use natu ral frequencies derived from natu-
ral samples. (On the fit between cognitive mechanisms 
and their task environment, see chapter 8.5 by Hertwig & 
Kozyreva, this handbook.)

Our  mental mechanisms do produce judgments that 
match normative standards from probability theory— 
when they are fed data in the format they  were designed 
to use. The practical relevance for modern environments 
is clear: a  simple change in how data are communicated 
can help patients and policy makers make rational deci-
sions about risk (Gigerenzer, 2014).

5. Case 2: Judgments That Look Like Normative 
Violations May Be Very Well Designed for Solving 
a Recurrent Adaptive Prob lem— One the Scientist  
Is Not Considering

In choosing between risky and sure options, many 
 people behave as if “losses loom larger than gains”: they 
are willing to take a bigger risk to avoid losing $100 than 
to gain the same amount. To appreciate the puzzle, imag-
ine  there is an outbreak of a disease that  will kill 600 
 people if nothing is done. Which of two programs to 
combat the disease would you  favor?
If program A is  adopted, 400  people  will die. If program B 

is  adopted,  there is one- third probability that nobody 
 will die, and two- thirds probability that 600  people  will 
die. (italics added)

Expected utility theory predicts indifference,  because 
both programs have the same expected value. With 
program A, 400  people die and 200 survive; program B 
produces the same result, on average. But Tversky and 
Kahneman (1981) found that  people are not indifferent: 
when the options  were framed as lives lost, most  people 
(~ 80%) chose the risky option, program B.

Even more puzzling: this preference reversed— most 
 people (~ 70%) chose the sure option, program A— when 
the same options  were framed as gains:

If program A is  adopted, 200  people  will be saved. If pro-
gram B is  adopted,  there is a one- third probability 
that 600  people  will be saved, and a two- thirds prob-
ability that no  people  will be saved.

Why? The loss and gain frames express logically and 
mathematically identical situations. Preference reversals 
are considered irrational: they violate the transitivity 
axiom of expected utility theory.

 Because expected utility theory cannot explain  these 
choices, psychologists and economists proposed that 

4. Case 1: To Discover a Well- Designed Reasoning 
Mechanism, You Need to Pre sent Stimuli  
in an Ecologically Valid Format

Behavioral ecologists have sophisticated models of the 
adaptive prob lems animals face when foraging.  Because 
efficient foraging requires animals to make judgments 
 under uncertainty,  these models incorporate ele ments 
of probability theory. Behavioral ecologists typically find 
that insects, birds, and other animals behave like good 
Bayesians when they make foraging decisions (e.g., Real, 
1991; Stephens & Krebs, 1986). Yet psychologists thought 
that the  human mind was “too  limited” in capacity to do 
the same (Kahneman, Slovic, & Tversky, 1982). Why the 
difference?

Computational adaptations should be ecologically 
rational: designed to work well in the ecological cir-
cumstances that selected for their design. Consider, for 
example, how well your visual system maintains color 
constancy given normal variations in light cast by the 
sun: your green car looks green all day, even at sunset, 
when it is bathed in “red” (long- wavelength) light. Yet 
 these sophisticated mechanisms fail— your green car 
looks brown—in the ecologically novel spectrum cast 
by sodium vapor streetlights. When psychologists first 
started to study Bayesian reasoning, the stimuli they 
used  were the cognitive equivalent of sodium vapor 
lights: probabilities of single events (e.g.,  there is a 4% 
chance you  will find an apple tree in this orchard) and 
normalized frequencies (36% of the trees are cherry 
trees).  These data formats are the recent cultural product 
of modern data gathering and statistical techniques.

When asked to compute a conditional probability 
based on such data (e.g., What is the chance that a tree 
with red fruit is an apple tree?),  people fail spectacularly. 
But they succeed when given natu ral frequencies: the 
absolute frequencies of events as you encounter them in the 
world (Gigerenzer & Hoffrage, 1995, 1999). Our minds 
automatically encode natu ral frequencies, which  were 
the only kind of probability data available in the ecol-
ogy of our hominin ancestors (Cosmides & Tooby, 1996). 
Imagine an orchard with 125 fruit trees— apple, cherry, 
lemon, and pear. On a stroll, you encounter 50 trees with 
red fruit: 5 apple trees and 45 cherry trees. Given  these 
natu ral frequencies, most  people realize that 5 out of 50 
trees with red fruit are apple trees— the conditional prob-
ability that a tree with red fruit is an apple tree (hits / 
(hits + false alarms)). Note that the low base rate of apple 
trees (4%) is implicit in the small number of them that 
you encounter as you walk through the orchard (thereby 
taking a “natu ral sample”; Kleiter, 1994). Adaptations for 
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A tangle of results that look irrational when com-
pared to traditional normative theories turn out to be 
rational responses to a prob lem that scientists  were not 
considering.

6. Case 3: Cues of a Reasoning System’s Proper 
Domain— the Context for Which It Evolved— May 
Be Necessary to Activate Its Procedures. To Know Its 
Proper Domain, One Needs to Correctly Characterize 
the System’s Adaptive Function

An adaptation’s proper domain is the information that the 
mechanism was designed by natu ral se lection to pro cess 
(Sperber, 1994). Ground squirrels, for example, evolved 
to produce alarm calls when they see a hawk overhead. 
The sight of a hawk is a cue that the squirrel is in danger 
from raptors now. This cue elicits the correct alarm call 
from the squirrel’s repertoire (snakes and predatory cats 
elicit dif fer ent calls). The approach of predatory birds is 
the adaptation’s proper domain.

The raptor call is also activated when zoologists fly a 
drone with the silhouette of a hawk overhead. The alarm 
call’s  actual domain is larger than its proper domain: 
it consists of all cues that activate the call, real hawks 
(proper domain) and hawk silhouettes alike. In studying 
a reasoning mechanism in  humans, experimenters need 
to consider (i) the mechanism’s evolved function, to 
ascertain its proper domain, and (ii)  whether the experi-
mental stimuli pre sent cues from its  actual domain— 
ones sufficient to activate the mechanism. Mercier and 
Sperber (2011) have argued that most studies finding 
poor logical reasoning lack cues to the mechanism’s 
proper domain: devising and evaluating arguments 
intended to persuade or dissuade another person.

Eliciting poor logical reasoning from  people is easy: 
give them a prob lem, without context, that requires them 
to produce a valid inference using modus tollens (MT). 
MT is an inference rule from first- order logic. Given a 
conditional rule, such as “If the pipe was fixed, then the 
bathroom floor  will be dry in the morning,” and a prem-
ise, such as “The bathroom floor is wet this morning,” it 
is logically correct to infer “The pipe was not fixed” (more 
generally: If P then Q; not Q; therefore not P). It is trivial 
to program a computer to produce an MT inference. Yet 
 people fail to do so about 75% of the time (Rips, 1994; 
Wason & Johnson- Laird, 1972).

But do our minds lack an MT inference rule? Or do 
indicative conditional rules stripped of context fail to 
activate it? The mind does seem to implement certain 
rules of first- order logic (e.g.,  people usually apply the 
modus ponens rule, correctly inferring Q from If P then 

 people have a stable taste: an aversion to loss. But a nor-
mative theory from behavioral ecol ogy explains  these 
results— and correctly predicts when they  will flip.

5.1 Risk- Sensitivity Theory, an Alternative Analy sis  
of Rational Decision Making
Consider a bird who is deciding to forage on one of two 
patches. Both patches yield about 200 seeds per day of 
foraging— they have the same expected value— but they 
differ in variance. The low- variance patch yields close to 
200 seeds each day. The yield of the high- variance patch 
varies wildly from one day to the next, from 50 to 400 
seeds.

Now consider the bird’s needs. If the bird needs to find 
100 seeds  today to live to tomorrow— a number below 
the expected value— the safest bet is to forage on the low- 
variance patch. But this is a bad bet if the bird needs 300 
seeds to live another day: a rational bird  will forage on the 
high- variance patch when its need is above the expected 
value. According to risk- sensitivity theory, a normatively 
correct decision takes three variables into account: (1) the 
expected value of each option, (2) the outcome variance 
associated with each option, and (3) the decision maker’s 
need level. A rational decision system  will be designed to 
minimize the probability of an outcome that fails to sat-
isfy one’s need (Stephens & Krebs, 1986).

To test risk- sensitivity theory in  humans, the experi-
menter must vary the minimum need level before sub-
jects make a decision. When no need level is specified, 
the subject is  free to fill in the blank any way she wishes. 
For monetary  gambles, maintaining the status quo is as 
good a minimum need level as any; a rational individual 
who does not want to fall below the status quo  will avoid 
the risky option and choose the sure one. But this is not 
 because she has an aversion to loss— a stable taste— that is 
in de pen dent of context.

Like birds,  people choose rationally when their min-
imum need level is specified (Mishra & Fiddick, 2012; 
Rode, Cosmides, Hell, & Tooby, 1999). When it is above 
the expected value,  people prefer the risky option. They 
choose the sure/low- risk option— thereby appearing 
to be loss averse— only when they need less than the 
expected value. Framing affects choice on the disease 
prob lem by changing the minimum number of lives 
 people feel they must save: saying that 400  people  will 
die leads  people to set a higher threshold than saying 
that 200  will survive (Mishra & Fiddick, 2012). As a 
bonus, the same theory shows that “ambiguity avoid-
ance” is also a myth (Camerer & Weber, 1992). Ambi-
guity is usually interpreted as “risky,” but when the 
context implies it is the lower- variance option,  people 
prefer the ambiguous option (Rode et al., 1999).
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disagree and an argument ensues,  there are two possi-
bilities: (i) one (or both) of them are misinformed (and 
they need more accurate information), or (ii) a decep-
tive message is being sent, intended to manipulate the 
receiver into  doing something against her interests that 
benefits the sender. Both call for epistemic vigilance by 
the receiver: the claims must be evaluated for their truth 
value. The presence of an argument is, therefore, a cue 
that should activate logical reasoning in the receiver. It 
should also activate logical reasoning in the sender, who 
must devise an argument that  will persuade the receiver.

This has empirical implications. Divorced from the 
context of an argument, the MT inference may not be 
activated. But it can be easily activated in an argumenta-
tive context. Let’s say I am arguing with the plumber, who 
claims that he fixed the leaky pipe in my powder room. 
I doubt him, and deny his claim by saying, “Oh yeah? 
 We’ll see! If the pipe was fixed, then the bathroom floor  will 
be dry in the morning.” When I discover that the bathroom 
floor is wet in the morning, we  will both conclude that 
the pipe was not fixed: we easily make the MT inference.

Mercier and Sperber review evidence in  favor of their 
hypothesis that an argumentative context is the proper 
domain for reasoning, logical and other wise. Their claim 
is not that reasoning  will be flawlessly logical in all argu-
ments: an argumentative context  will activate logic 
when the reasoner must be epistemically vigilant, but 
confirmation bias and other infelicities  will emerge when 
sound reasoning would undermine one’s attempt to per-
suade. In their words, “In all  these instances tradition-
ally described as failures or flaws, reasoning does exactly 
what can be expected of an argumentative device: Look 
for arguments that support a given conclusion, and, 
ceteris paribus,  favor conclusions for which arguments 
can be found” (Mercier & Sperber, 2011, p. 57).

7. Case 4: A Cognitive Adaptation for Reasoning May 
Be Specialized for a Specific Domain and, Therefore, 
Equipped with Procedures That Are Content Rich 
Rather Than Content  Free

Normative theories of rationality from logic, mathe matics, 
and economics typically posit content- free reasoning pro-
cedures: ones that operate uniformly on information from 
 every domain. Such procedures— domain general ones—do 
exist in the  human mind (automatic frequency computa-
tion is an example), but they cannot solve even routine 
adaptive prob lems by themselves (Cosmides & Tooby, 
1987; Tooby & Cosmides, 1992). Domain- specialized rea-
soning systems  were also required.  These are equipped 
with content- rich concepts, inference procedures, and 
decision rules, ones that are superbly engineered for 

Q and P). If the  human mind has a system designed for 
reasoning logically, what adaptive prob lem did it evolve 
to solve? Mercier and Sperber (2011) have proposed 
that conscious, deliberative reasoning— including logi-
cal reasoning— evolved to solve adaptive prob lems that 
arise during communication.

6.1 Biologists Have a Normative Theory  
of Communication
A seminal paper on the evolution of communication by 
Krebs and Dawkins (1984) changed how biologists study 
animal communication. A communication system  will 
not evolve  unless it confers a net benefit on both senders 
and receivers—if a signal benefits only senders, receivers 
 will not evolve mechanisms to decode it. But once a sig-
naling system has evolved, situations  will arise in which 
senders can manipulate receivers, to their own advan-
tage, by sending deceptive signals. If acting on deceptive 
signals is costly to the fitness of the receiver, se lection 
 will  favor adaptations in receivers to detect which sig-
nals are deceptive. As receivers get better at distinguish-
ing honest from deceptive signals, se lection  will  favor 
adaptations in senders for producing deceptive signals 
that are more difficult to detect, and so on. A coevo-
lutionary arms race ensues over generations: receivers 
get better and better at detecting deceptive signals, and 
senders get better and better at making deceptive signals 
resemble honest ones. By contrast, the fitness interests 
of receivers and honest signalers converge; this  favors 
the evolution of honest signals that are difficult for a 
deceptive sender to fake (Hingham, 2014).

Language pre sents additional prob lems, however, 
 because sending a deceptive message is no more costly 
(in words produced) than sending an honest one. 
Detecting the veracity of a signal requires logical reason-
ing, according to Mercier and Sperber, so that receivers 
can maintain “epistemic vigilance.” While the receiver 
is evaluating the sender’s claim, it is stored in a special 
data format— a meta- representation— which is decou-
pled from the receiver’s semantic memory (her database 
of knowledge). Logical reasoning is necessary for her to 
detect  whether the claim contradicts other claims made 
by the sender, claims made by other  people, and facts 
she already knows. This evaluation pro cess is particu-
larly impor tant, they claim, in arguments intended to 
persuade the receiver to act on beliefs she does not yet 
hold or dissuade her from actions she wants to take.

6.2 Argumentative Context: A Cue That Activates 
Logical Reasoning
When the sender and receiver already agree,  there is no 
argument—no attempt to persuade or dissuade. If they 
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analyzing the reproductive consequences of alternative 
decision rules over generations, evolutionary biologists 
can determine which strategies natu ral se lection is likely 
to  favor and which are likely to be selected out. This source 
of normative theories can be tapped for any domain in 
which organisms make consequential choices.

The evolution of cooperation has been extensively 
modeled using  these tools, with clear results. Strategies that 
indiscriminately provide benefits to  others— including 
 those who do not reciprocate— are eventually eliminated 
from the population.  Because they incur reproductive 
costs without compensating benefits, they are outcom-
peted by designs that cheat— that accept benefits with-
out reciprocating them. Se lection  favors strategies that 
cooperate conditionally: ones that cooperate with other 
cooperators and withdraw cooperation from cheaters 
(e.g., Axelrod, 1984; Trivers, 1971). A cheater is an agent 
endowed with decision rules that accept benefits offered 
by other agents without satisfying their requirements. 
Innocent  mistakes do not reveal a cheater; a cheater is 
an agent who violates a social exchange agreement by 
design (by virtue of its decision rules), not by accident.

This analy sis carries many implications about how a 
system must be designed to implement a strategy for con-
ditional cooperation. The most straightforward: for social 
exchange to evolve, agents must have mechanisms that 
make them very good at searching for information that 
would reveal cheaters. A content- free logic, deontic or 
other wise, cannot do the job (e.g., Cosmides & Tooby, 
2008).

7.2 Information Search: Looking for Cheaters  
versus Looking for Logical Violations
The phi los o pher Karl Popper proposed a normative 
standard for evaluating hypotheses: look for violations, 
not confirmation. “All swans are white” is  violated by 
finding a single black swan, no  matter how many white 
swans you have so far observed. (Realizing this requires 
the MT inference.) Peter Wason developed his four- card 
se lection task to find out if  people are natu ral falsifica-
tionists, who look for cases that could violate a hypoth-
esis that is presented as a conditional rule (If P then Q). 
His research suggests that we are not (Wason & Johnson- 
Laird, 1972).

Imagine, for example, that you are given incomplete 
information about four birds— two of unknown color (a 
swan and a parrot) and two of unknown species (one 
black and one white). Which birds should you investi-
gate further to see if any of them violate the rule “If a 
bird is a swan, then it is white”? Most  people want to 
investigate the swan, to learn its color. That is logically 
correct: discovering a black swan would violate the rule. 

producing fitness- promoting inferences in one ancestral 
domain but do not apply outside it (e.g., concepts like 
belief and desire are useful for predicting the be hav ior of 
 people, but not rocks). Discovering  these systems requires 
careful analy sis of an adaptive prob lem to see what counts 
as a functional (i.e., normative) solution.

The evolution of cooperation for mutual benefit— 
social exchange— poses exacting prob lems, which have 
been modeled extensively. In  humans,  these prob lems 
are solved by a functionally specialized reasoning sys-
tem that deploys content- rich repre sen ta tions and pro-
cedures. Its features  were revealed by experiments that 
tested hypotheses derived from evolutionary game 
theory— hypotheses that  were constructed in advance of 
collecting any data.

7.1 Evolutionary Game Theory Is a Source  
of Normative Theories
Game theory is a tool for analyzing strategic social 
be hav ior— how agents  will behave when they are inter-
acting with  others who can anticipate and respond to 
their be hav ior (chapter  9.3 by Alexander, this hand-
book). Economists use it to analyze how  people respond 
to incentives pre sent in the immediate situation. Their 
models typically assume rational actors, who calculate 
the payoffs of alternative options (anticipating that 
other players  will do likewise) and choose the option 
most likely to maximize their short- term profits (but see 
Hoffman, McCabe, & Smith, 1998).

Evolutionary biologists also  adopted game theory as 
an analytic tool, but with a twist (Maynard Smith, 1982). 
Evolutionary game theory does not assume eco nom ically 
rational agents who can reason about the reasoning of 
other agents via “backward induction.” It can be use-
fully applied to cooperation among bacteria or fighting 
in spiders. It is used to model interactions among agents 
endowed with well- defined decision rules that produce 
situationally contingent be hav ior. Although  these deci-
sion rules are sometimes called “strategies” by evolution-
ary biologists, no conscious deliberation by bacteria (or 
 humans) is implied (or ruled out) by this term. Sometimes 
results are derived analytically; in more complex cases, 
agent- based simulations of natu ral se lection are used.

 Whether the decision rules being analyzed are 
designed to regulate foraging, fighting, or cooperating, 
the immediate payoffs of  these decisions, in food or 
resources, are translated into the currency of offspring 
produced by the decision- making agent, and  these off-
spring inherit their parent’s decision rule. In evolution-
ary game theory, a decision rule or strategy that garners 
higher payoffs leaves more copies of itself in the next 
generation than alternatives that garner lower payoffs. By 
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function is a mathematical device for understanding the 
dynamics of markets in which millions of anonymous 
individuals cooperate for mutual benefit: it transforms 
changes in inputs (e.g., the price of corn) into changes 
in outputs (e.g., the quantity of tortilla chips produced). 
 These models are successful for their intended purpose. 
But they fail when they are used to predict the be hav-
ior of individuals cooperating in small groups (Smith, 
2003). Is this another failure of  human rationality?

8.1 A Puzzle from Behavioral Economics
Cooperation can be studied in the laboratory by having 
 people interact in games in which the monetary payoffs 
for dif fer ent choices are carefully controlled— dictator 
games, prisoner’s dilemma games, bargaining games 
(e.g., the ultimatum game), trust/investment games, 
public goods games, and  others. When behavioral econ-
omists used  these methods to test predictions of game 
theory, they found that  people in small groups do not 
act as if they are maximizing immediate monetary pay-
offs (e.g., Hoffman et al., 1998). In a one- shot interac-
tion with anonymous  others, Homo economicus models 
predict no generosity, no cooperation, no trust, and 
no punishment. Yet  people give more, cooperate more, 
trust more, and punish defections more than  these mod-
els predict, even when the experimenter tells them that 
the interaction is one- shot and anonymous. But why? 
Generosity in anonymous, one- shot games is irrational, 
given the standard theories. According to both economic 
and evolutionary game theory, repeated interactions are 
necessary for be hav iors like this to evolve.

This “excess altruism” is considered irrational on 
many economic theories, and some social scientists have 
viewed it as evidence that the psy chol ogy of coopera-
tion was  shaped by group se lection rather than se lection 
operating on individuals (e.g., Bowles & Gintis, 2013). 
But are  these be hav iors  really excess altruism— that is, 
beyond what can be explained by se lection on individu-
als for direct reciprocity?

8.2 Adaptationist Game Theory: Model the 
Information- Processing Prob lem and Let the  
Psy chol ogy Evolve in Response
Se lection does not occur in a vacuum: the physical and 
social ecol ogy of a species shapes the design of its adapta-
tions, and our hunter– gatherer ancestors lived in small, 
interdependent bands, and had many encounters with 
individuals from neighboring bands. Adaptations for 
direct reciprocity evolved to regulate cooperation in an 
ancestral world in which most interactions  were repeated. 
The high prior probability that any given interaction  will 
be repeated should be reflected in their design. So should 

But that implies you should also investigate the black 
bird, to learn its species: it too might be a black swan. Most 
 people fail to investigate the black bird, and many want 
to investigate the white one (unnecessary: white birds— 
swan, dove, parrot— cannot violate the rule). Only cases 
of P & not Q ( here, swans that are not white) can violate If 
P then Q. Most  people recognize this when asked, but they 
do not spontaneously use logic to search for violations of 
indicative rules. Fewer than 25% of  people seek informa-
tion about P, not Q, and no other case.

By contrast, 65% to 80% of  people successfully look 
for violations— cheaters— when the rule involves social 
exchange. The mind interprets a conditional rule as a 
social contract when it expresses an agreement to cooper-
ate for mutual benefit, for example, “If you borrow my 
car, then you must fill the tank with gas” (or, more gen-
erally, “If you accept benefit B from agent J, then you 
must satisfy J’s requirement R”). It becomes obvious that 
one needs to investigate the guy who borrowed the car 
(P) and the one who did not fill the tank (not Q).

7.3 A Content- Rich Adaptive Logic
Wason tasks involving social exchange activate a cog-
nitive adaptation that evolved for detecting cheaters. It 
is part of a computational system that is specialized for 
reasoning about social exchange (for a review of the evi-
dence, see Cosmides & Tooby, 2015). The social exchange 
system dissociates, both functionally and neurally, from 
reasoning systems that are activated by content tapping 
other domains (including precautionary rules, which 
are so similar to social contracts that most theories do 
not distinguish them). It represents social contracts 
using content- rich proprietary concepts (e.g., agenti, ben
efit to agenti, requirement of agentj, obligation, entitlement, 
cheater). Its procedures operate on  these repre sen ta tions, 
producing inferences appropriate to social exchange 
that are not licensed by content- free logics (deontic or 
other wise). Its cheater detection mechanism attends to 
information that would reveal cheaters,  whether the 
resulting answer is logically correct or not. And that 
mechanism looks for cheaters— innocent  mistakes do 
not elicit violation detection. The design features of this 
content- rich system are normatively correct: they are 
precisely tailored for their adaptive function.

8. Case 5: Choices That Deviate from Economic 
Rationality May Be the Most Adaptive,  
Fitness- Promoting Strategy— Not a “Bias”

Economists have built models in which rational indi-
viduals and firms behave “as if” they  were maximizing 
profits (or, more accurately, utility functions). A utility 
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interaction is one- shot must be before the agent defects. 
Se lection favored a threshold of evidence so high that 
most interactions  were classified as repeated, triggering 
cooperation. In other simulations, the agents  were perfect 
Bayesians who developed rational beliefs about  whether 
an interaction is one- shot by using Bayes’ rule to integrate 
(i) cues that the given interaction is one- shot, with (ii) per-
fect knowledge of the base rate of one- shot interactions in 
the population. What evolved is a regulatory variable that 
determines the probability the agent  will cooperate given 
its rational belief that the interaction is one shot.

Se lection favored designs with a very high probability 
(70%–90%) of cooperating given the rational belief that 
the interaction is one- shot, with modest gains in trade and 
a modest number of encounters for  those interactions that 
 were repeated. This was true even when the base rate of 
one- shot interactions was unrealistically high (50%–70%).

The simulations with Bayesian agents are particularly 
apt  because most subjects who cooperate in experimen-
tal economics games say they believed the experimenter’s 
claim (a cue!) that their interaction would be one- shot. 
The results show that natu ral se lection can  favor a disposi-
tion to start out cooperating, even in  people who ratio-
nally believe an interaction is most likely to be one- shot. 
No group se lection is needed. And this disposition to 
cooperate in one- shot interactions is not a  mistake or an 
irrational “bias”: it is the most adaptive, fitness- promoting 
decision.
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